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ABSTRACT
The pursuit of more efficient patient-friendly health systems and re-
ductions in tertiary health services use has seen enormous growth in
the application and study of remote patient monitoring systems for
cardiovascular patient care. While there are many consumer-grade
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R�ESUM�E
L’objectif de rendre le système de sant�e plus efficace tout en �etant
proche des patients et de r�eduire le recours aux services de sant�e
tertiaires a entraîn�e une croissance ph�enom�enale de l’application et
de l’�etude des systèmes de t�el�esurveillance des patients dans le
The pursuit of more efficient patient-friendly health systems
and reductions in need for tertiary health services use has seen
enormous growth in the application and study of remote
patient monitoring systems in cardiovascular patient care over
the past 2 decades.1-3 More recently, the response to
coronavirus-2019 (COVID-19) has catapulted this area of
clinical practice and research to new heights. Health system
innovators have worked feverishly to deploy noninvasive sys-
tems that facilitate remote patient surveillance and moni-
toring, as well as the physical distancing of patients and
families, to prevent viral spread.4 During the COVID-19
crisis, allowances made by regulatory agencies such as the
United States Food and Drug Administration (FDA) have
permitted health systems to leverage legally marketed patient
monitoring solutions with modifications beyond their original
indications for clinical use.5 The expansion of the capabilities,
reach, and availability of these technologies has resulted in an
unprecedented number of patient biophysical parameters
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products available to monitor patient wellness, the regulation of these
technologies varies considerably, with most products having little to no
evaluation data. As the science and practice of virtual care continues
to evolve, clinicians and researchers can benefit from an understand-
ing of more comprehensive solutions capable of monitoring multiple
biophysical parameters (eg, oxygen saturation, heart rate) continuously
and simultaneously. These devices, herein referred to as continuous
multiparameter remote automated monitoring (CM-RAM) devices,
have the potential to revolutionise virtual patient care. Through
seamless integration of multiple biophysical signals, CM-RAM tech-
nologies can allow for the acquisition of high-volume big data for the
development of algorithms to facilitate early detection of negative
changes in patient health status and timely clinician response. In this
article, we review key principles, architecture, and components of CM-
RAM technologies. Work to date in this field and related implications
are also presented, including strategic priorities for advancing the
science and practice of CM-RAM.

domaine des soins cardiovasculaires. Bien qu’il existe de nombreux
produits de surveillance grand public ax�es sur le bien-être des patients,
la r�eglementation de ces technologies varie consid�erablement, la
plupart des produits ne disposant que de peu de donn�ees d’�evaluation,
voire aucune. À mesure que la science et la pratique des soins virtuels
�evoluent, les cliniciens et les chercheurs peuvent tirer profit de la
compr�ehension de solutions plus complètes permettant de surveiller
plusieurs paramètres biophysiques (par exemple, la saturation en
oxygène, la fr�equence cardiaque) en continu et simultan�ement. Ces
solutions font appel à des dispositifs automatis�es de t�el�esurveillance
continue multiparam�etrique (DATCM), qui pourraient bien
r�evolutionner la prise en charge virtuelle des patients. Grâce à l’int�e-
gration transparente de plusieurs signaux biophysiques, les technolo-
gies sur lesquelles reposent les DATCM permettent de recueillir de
grands volumes de m�egadonn�ees en vue du d�eveloppement d’algo-
rithmes destin�es à faciliter la d�etection pr�ecoce des variations
n�egatives de l’�etat de sant�e des patients et l’intervention rapide des
cliniciens. Dans cet article, nous examinons les fondements, l’archi-
tecture et les composants des technologies propres aux DATCM. Nous
pr�esentons aussi les travaux r�ealis�es jusqu’à pr�esent en la matière
ainsi que leurs implications, dont les priorit�es strat�egiques ax�ees sur
l’�evolution des aspects scientifiques et pratiques des DATCM.
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being monitored remotely. The widespread proliferation of
consumer-grade wearable remote patient monitoring devices
for wellness monitoring has also changed the face of home-
based surveillance of patients’ cardiovascular parameters
beyond the use of Holter electrocardiography (ECG).1-3,6

Although there are many available consumer products to
measure patient biophysical parameters, few have stood out in
terms of moving these devices forward for clinical-grade
application. Wellness devices are limited in the claims they
can make regarding the diagnosis, prevention, or treatment of a
disease or condition.7 Manufacturers can suggest they may help
to reduce the risk for chronic disease or conditions such as high
blood pressure (BP) or type 2 diabetes, where a healthy lifestyle
has been generally well accepted to have demonstrated risk
reduction or help with living well.7 The Apple Watch is an
example of a product that has impressively featured a number of
measurable biophysical parameters over the course of product
releases, including heart rate (since Series 1), on-demand lead-1
ECG tracing (Series 4), and blood oxygen saturation (Series
6).8-10 Although Apple Watch on-demand ECG tracings are
approved by the FDA for arrhythmia detection, the blood ox-
ygen saturation sensor is for wellness monitoring only; it em-
ploys reflectance pulse oximetryda technique that can be
vulnerable to artefacts from patient motion.11

Furthermore, the regulation of consumer-grade wearable
patient monitoring products varies considerably, with most
available products having little to no published evaluation
data.12 The majority of wellness monitoring devices are
capable of measuring a maximum of 1 to 2 episodic (eg, on-
demand ECG) or continuous (eg, temperature) biophysical
parameters simultaneously, thereby limiting clinical utility for
patient surveillance, diagnosis, and timely management of
changes in health status. While single parameter monitoring
(eg, heart rate) has important application in certain situations
(eg, atrial fibrillation monitoring), many patients require
continuous measurement of a diversity of biophysical pa-
rameters, similarly to inpatients in the hospital. Innovators
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working with market-ready solutions are also often faced with
the inherent complexities of intermingling proprietary sys-
tems,13 each with operational independence that features
unique biophysical parameters and data communication
channels, as well as data storage and health system integration
requirements.

As the science and practice of virtual care and remote pa-
tient monitoring evolves, clinicians and researchers can benefit
from an understanding of more comprehensive solutions,
capable of monitoring 3 or more biophysical parameters
continuously and simultaneously. These systems target
optimal efficiency by maximising the metrics collected and by
streamlining processes through the application of a single in-
tegrated solution. More advanced systems are also capable of
collecting raw biometric waveforms, such as photo-
plethysmography and ECG, that can be used to derive
noninvasive estimates of more complex biophysical parameters
that would normally be measured continuously through
invasive means (eg, continuous BP via invasive arterial cath-
eter). These devices, hereafter referred to as continuous
multiparameter remote automated monitoring (CM-RAM)
devices, have the potential to revolutionise patient monitoring
through seamless integration of multiple time-synchronised
biophysical parameter signals. These technologies can also
yield high-frequency/high-volume big data for the develop-
ment of algorithms to facilitate early detection of negative
changes in patient health status and timely clinician response.
Figure 1 illustrates the purpose of CM-RAM devices, vs
wellness monitoring and other medical-grade devices.
CM-RAM Architecture: Principles and
Components

Body sensor network

CM-RAM systems include sensors that can be either
attached directly to the body or integrated into different
ust from ClinicalKey.com by Elsevier on December 27, 
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Figure 1. Purpose of continuous multiparameter remote automated monitoring devices vs wellness monitoring and other medical-grade devices.
ECG, electrocardiography.
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materials for indirect body sensing. The interconnection of
these sensors forms a “body sensor network” (BSN)
(Fig. 2). BSNs consist of 3 layers, with each layer
communicating either wirelessly or through hardwired
channels.14 First is the body sensing layer, that includes
wearable sensor nodes, each capable of measuring, sampling
(ie, digitising) and processing multiple biophysical sig-
nals.14 BSNs can be subcategorised into sensors affixed to
the patient and the main processing unit where signals are
digitised, filtered, and processed. The second layer is the
personal area network layer, containing the coordinating
device that runs the end-user applications. These are
typically handheld devices (eg, smartphones) or tablet-
based computer devices that can perform either limited
or more advanced forms of local data processing to display
the metrics being collected or integrate and analyse them to
assist in clinical decision making. Signal transmission from
the body sensing layer to the personal area network layer is
typically through a wireless communication protocol,
configured for short-range low-power radiofrequency
communication, eg, Bluetooth or Zigbee. The third layer is
the global network layer, a back-end cloud infrastructure to
support data storage, analytics, and interfacing with dash-
boards via web portals.
Downloaded for Anonymous User (n/a) at Innlandet Hospital Tr
2022. For personal use only. No other uses without permissio
Body sensing layer

CM-RAM devices use fundamental principles of biomed-
ical engineering to measure and derive clinically relevant
biophysical parameters. Sensors convert physical measure-
ments into electrical output that can be quantified and ana-
lysed by means of digital signal processing.15 These signals can
be measured either in an analog format as continuous mea-
surements, or in a digital format with samples taken at defined
sampling frequencies (eg, ECG signal sampled at 500 Hz
[times per second]). Sensors are classified based on the mode
of transduction, including mechanical, electrical, optical, and
chemical modalities.16 Supplemental Table S1 presents details
on sensor categories according to transduction method.

Common biometric sensors, continuous biophysical pa-
rameters, and sensor placement. Figure 3 presents common
forms of biometric sensors and related positioning for optimal
signal quality. ECG draws on the principles of biopotentials
measured through wet or dry electrodes. Wet electrodes
consist of a solid conductive pad that interface with the skin
via an electrolyte containing hydrogel that minimises the
electrical impedance of skin.16 Dry electrodes do not contain
any electrolyte materials and instead rely on direct skin
ust from ClinicalKey.com by Elsevier on December 27, 
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Figure 2. Body sensor network. ECG, electrocardiography; PPG, photoplethysmography.
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contact. Disposable wet electrodes typically use silveresilver
chloride contacts with electrolyte gel for conduction17 and
dry electrodes use metal plating. Specialised electrodes have
been developed to support short- or long-term monitoring
and different activities (eg, resting vs stress testing).

Within CM-RAM devices, electrodes are paired to mea-
sure the voltage potential difference between 2 points.
Common examples of this include ECG, electroencephalog-
raphy, and electromyography. Minimum 3-lead (leads I-III)
ECG electrode positioning is desired for CM-RAM devices
(Fig. 3). Most commercial-grade products featuring ECG
patches are limited to a single lead configuration owing to
limitations with local data storage (within the device), power,
and the need for wearability. More complex systems, such as
Visi Mobile (Sotera Wireless Inc, San Diego, CA)18 (see
subsequent section, Work to Date) offer multiple lead
configurations.

Photoplethysmography (PPG) captures volumetric changes
in blood flow measured through optical sensors, which consist
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of light-emitting diodes (LEDs) at defined wavelengths and
photo diodes for measuring transmitted light. CM-RAM de-
vices can measure PPG at varying wavelengths, including 660
nm (visible red light) and 940 nm (infrared IR] light) to
capture oxyhemoglobin saturation (SpO2),

10 and 525 nm
(visible green light) for pulse detection. These sensors can be
arranged in a “transmittance” orientation, where the LEDs
and photo diodes are positioned on opposite surfaces of the
peripheral site under measurement. Alternatively, the optical
sensors can be positioned in a “reflectance” orientation where
the LEDs and photo diodes are positioned on the same tissue
surface. Oxygen saturation is measured by determining the
ratio of absorption between red and IR channels. Green PPG
is a movement-resilient signal, frequently used for pulse rate
detection in ambulatory devices. Reflective PPG sensors are
commonly placed on the forehead and wrist locations, and
transmittance-based orientations are facilitated on the fingers,
toes, ear lobes, and nasal cavity (Fig. 3).19 These optical
sensors are vulnerable to artefacts from patient motion, as well
ust from ClinicalKey.com by Elsevier on December 27, 
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Figure 3. Biometric sensor placement on the body. ECG, electrocardiography, LED, light-emitting diode; PPG, photoplethysmography; SPO2,
oxyhemoglobin saturation.
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as intrusion by ambient (environmental) light.19 Moreover,
accuracy testing in patients with a range of skin pigmentation
has been limited.

Body temperature is measured with thermoresistors via
conduction through a metal contact point with the skin or
thermopiles as IR sensors that measure thermal levels.20 Core
body temperature is a more challenging metric to capture than
skin temperature, with tympanic, forehead, and underarm
sensor sites demonstrating the greatest promise for accuracy.21

Many CM-RAM devices to date capture surface skin tem-
perature, and ongoing research is focused on the development
of advanced algorithms to map these metrics to a core body
temperature for clinical-grade application.21 For clinical de-
cision making, core temperature is the preferred measurement
because skin temperature can be affected by a number of
environmental factors, such as ambient room temperature and
climate.21

Continuous respiration rate is among the most infre-
quently measured vital signs, yet the importance of this metric
has become paramount during the COVID-19 pandemic.
The criterion standard for capturing continuous respiration
rate includes the use of capnography and nasal cannula.
Wearable CM-RAM devices commonly measure respiration
rate with elastomeric plethysmography through belts placed
snugly around the chest that use piezoelectric (ie, electrical
detection of mechanical stress) sensors to register expansion
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and contraction, or through impedance plethysmography
where bioimpedance (ie, estimation of body composition) is
measured between chest-mounted ECG electrodes.17 Discrete
respiration measurements can also be derived from ECG or
PPG signals by identifying the amplitude and frequency de-
viations caused by respiration.17 Both of these modalities pose
challenges to patient comfort; the respiration belt can be
uncomfortable for female or obese patients, and wet electrodes
can cause skin irritation with extended wear. Further con-
founding can occur by artefacts related to patient vocalisations
and coughing.17 A challenging area is the use of these sensors
in patients with underlying chronic respiratory conditions that
feature irregular breathing patterns, such as chronic obstruc-
tive pulmonary disease and asthma. Advances are being made
in contactless sensing systems, which show promise for ac-
curate respiratory rate and heart rate measurement at a dis-
tance, while overcoming these types of movement and
artefact-related challenges.22

Movement and position. Some CM-RAM devices also track
patient position and movement through inertial measurement
units, which include accelerometer, gyroscope and magne-
tometer sensors placed on the limbs or torso. Accelerometers
and gyroscopes utilise either piezoresistive or piezoelectric
sensors to measure the acceleration of an object (or rate of
change of velocity) and angular velocity, respectively. A
ust from ClinicalKey.com by Elsevier on December 27, 
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Table 1. CM-RAM device characteristics

Device Manufacturer Vital signs measured Other parameters measured Location Battery life Connection type
Connection
range (m) EMR SOA D W Setting

VitalPatch (previous
version was
HealthPatch
MD, which is no
longer available)

VitalConnect (San Jose, CA) ECG, HR, RR, ST HRV, steps, body posture,
fall detection, activity

Chest 5 days Bluetooth Max 10 U U U U Clinic, home

SensiumVitals
System

Sensium Healthcare
(Oxford, UK)

HR, RR, ST None Chest, armpit 5 days Wi-Fi 802.11 b/g 180 U U U U Clinic

Visi Mobile Sotera Wireless, Inc (San
Diego, CA)

HR, BP, RR, SpO2, ST,
ECG

Body posture, fall detection Chest, wrist, thumb 14-16 h Wi-Fi 802.11 radio 180 U U Clinic

Body Guardian Preventice Solutions
(Minneapolis, MN)

ECG, HR, RR None Chest 12 h Bluetooth w 3 U Home

Everion Biovotion (Zurich,
Switzerland)

HR, HRV, RR, SpO2, ST,
blood pulse-wave, energy
expenditure

Activity, barometric pressure,
sleep, relax indicator,
galvanic skin response

Upper arm 5-46 h Bluetooth e U U Clinic, home

Zephyr System
(BioPatch and
Harness)

Medtronic Inc (Annapolis,
MD)

HR, RR, estimated CT Activity, body posture Chest 12-28 h Zephyr ECHO
gateway,
Bluetooth 2.1þ,
3G

e U Clinic

Mini Medic Athena GTX (Des Moines,
IA)

HR, SpO2, ST PR, PWTT, Murphy Factor Forehead, fingertip 12 h Zigbee 802.15.4 100 U U Clinic, home

WVSM Athena GTX (Des Moines,
IA)

HR, BP, RR, SpO2 None Chest, upper arm,
fingertip

7 h Athena Device
Management
Suite

< 183 U U Clinic, home

Hexoskin Carr�e Technologies
(Montr�eal, QC)

HR, ECG, SpO2, RR, ST Activity and sleep data Upper body 12-30þ h Bluetooth e U U U Home

Philips IntelliVue
Guardian
Solution (IGS)

Philips (Amsterdam, The
Netherlands)

HR, RR, SpO2, BP None Upper arm, wrist,
belly

12-24 h Short-range radio to
IntelliVue
Guardian
Software

< 100 U U Clinic

CDMA, code-division multiple access; CT, core temperature; ECG, electrocardiography; D, disposable; EMR, electronic medical record; HR, heart rate; HRV, heart rate variability; PR, pulse rate; PWTT, pulse-
wave transit time; RR, respiration rate; SOA, system of alerts; SpO2, oxyhemoglobin saturation; ST, skin temperature; W, waterproof; WVSM, Wireless Vital Signs Monitor; e, could not locate information.
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magnetometer measures the strength and direction of mag-
netic fields to establish patient position. These signals have
been utilised for human activity recognition (HAR),23 activity
indexes, step counting, energy output, sleep quality and fall
risk assessment and detection.24Ballistocardiography (BCG)
utilises specially located (typically on the chest) inertial mea-
surement units to measure small movements caused by the
mechanical output of the heart and is often used to derive a
heart rate.23 Although some CM-RAM devices, such as
VitalPatch (VitalConnect, San Jose, CA),25 feature inertial
measurement units s to capture motion and position metrics,
these outputs are not subject to regulatory standards or widely
adopted in clinical settings at this time. Often, these signal
inputs are included in CM-RAM systems to support advanced
digital signal processing (DSP) of incoming vital signs data,
such as identification and mitigation of the confounding ef-
fects of patient motion artefact.

Personal area network layer

Signals generated in the BSN sensing layer are typically
wirelessly transmitted to a base station (eg, tablet or smart-
phone) within the personal area network layer through a
wireless body area network (WBAN).26 Almost universally,
CM-RAM systems use Bluetooth low-energytransmission27

because of low power requirements, high-speed data trans-
mission rates of up to 1 megabit per second, and an operating
range of up to 100 metres from device to base station.28 More
advanced systems have sufficient on-board data storage to
allow for delayed signal transmission if the base station is out
of range. Once transmitted, the raw signals are digitised and
preprocessed to remove noise artefacts and biophysical pa-
rameters metrics are derived.

Global network layer

Originating from the patient at home (body sensing layer),
preprocessed vital signs data within CM-RAM devices can be
transmitted from the base station (personal area network layer)
to a cloud infrastructure in the global network layer from the
base station and relayed to clinical support teams. These
communications can be bidirectional (Fig. 2) and are achieved
through cellular 3G, 4G, 5G, or Wi-Fi networks.29 More
sophisticated CM-RAM systems feature cloud infrastructures
that support long-term storage of biophysiological signals, as
well as web-based clinician portals or dashboards for remote
monitoring of patient status. With some systems, early
warning scores30 are applied to collected biophysical data
within the central infrastructure of hospital information sys-
tems to identify patients at risk for clinical deterioration and
facilitate early intervention.
CM-RAM: Work to Date
The science of CM-RAM implementation and evaluation

is developing rapidly. A literature search on studies using CM-
RAM technologies yielded 38 studies of various technologies
published from 2012 to 2021 (see Supplemental Appendix S1
for details). Table 1 provides a summary of devices and their
features and Supplemental Table S2 summarises all of the
studies. While preliminary effectiveness data are accruing,
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most studies focus on clinical validation, feasibility of imple-
mentation, and patient wearability and acceptability.

Three of the most well studied CM-RAM technologies to
date are the VitalPatch, the SensiumVitals System (Sensium
Healthcare, Oxford, UK), and Visi Mobile.18,31,32 The
VitalPatch and SensiumVitals systems consist of a disposable
adhesive wireless ECG patch sensor with 3-axis accelerometer
(VitalPatch only) and thermoresistor affixed to the patient’s
chest that captures multiple biophysical parameters, including
heart rate, respiratory rate (ie, impedance pneumography),
and skin temperature. Visi Mobile also includes a wrist-worn
device that captures SpO2 and BP and features a touch screen
vital signs display. These systems transmit vital signs in real
time to patients and clinicians. Data are transmitted to cloud
platforms for storage and further analysis.18,31,32

All 3 devices have undergone clinical validation testing
comparing their metrics against manual vital signs measure-
ments taken by nurses.18,31-34 In a feasibility study (n ¼
20),18 patients admitted to internal medicine and surgical
wards were monitored with the VitalPatch and Visi Mobile
devices for 2 to 3 days.18 Vital signs collected by both devices
and nurses were used to calculate and compare modified early
warning scores for clinical deterioration. The clinical mea-
surements and both device measurements were in agreement
within accepted limits, although wide limits of agreement
were found.18 In 15% of the Visi Mobile and 25% of the
VitalPatch cases, clinically relevant differences in modified
early warning score comparisons were found based on
inconsistent respiratory rate measurements; both devices
overestimated respiratory rate compared with nurses.18

Technical issues also differed by device; more than 50% of
VitalPatch artefacts and data losses had no discernable cause
while the rest were due to loss of skin contact, transmission
problems or the patient leaving the ward without their mobile
device.18 For Visi Mobile, almost 70% of all reported artefacts
were caused by a connection failure between the mobile device
and chest patch sensor. During the study, 1 patient monitored
with Visi Mobile had clinical deterioration detected 3 days
after elective colorectal surgery. The device alerted the pa-
tient’s nurse that he developed both tachycardia and tachyp-
nea; this adverse event detection occurred between 2
scheduled nurse vital signs measurements and could otherwise
have been missed.18

Verrillo et al.34 evaluated the feasibility of the Visi Mobile
device for improving patient outcomes by comparing the
prevalence and incidence rates of postoperative complications,
rapid response team, intensive care unit (ICU) transfers, and
death rates after admission in 422 postoperative patients
(general care, orthopedics, trauma) with continuous vital signs
monitoring vs standard of care; nurse satisfaction with the
device was also examined. Patients were asked to wear the
device for at least the first 48 hours of unit admission. The
incident rate of complications declined significantly in the Visi
Mobile group compared with the control group, ie, 9.6 vs
34.3 per 1000 patient-days (P < 0.05).34 Clinically significant
decreases in transfers to ICU and failure-to-rescue events in
the Visi Mobile group were observed as well. By incorporating
Visi Mobile data into their patient assessments, nurses re-
ported that they were able to prioritise patient care with
greater accuracy, identify signs of clinical deterioration, and
facilitate early intervention.34
ust from ClinicalKey.com by Elsevier on December 27, 
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The accuracy and feasibility of the SensiumVital System
was assessed in a series of randomized controlled trials (RCTs)
in patients undergoing major elective general surgery.32,33 The
reference standard was nurse-recorded vital signs, factored into
the National Early Warning Score for adverse event predic-
tion. Participants were individually randomised 1:1 to receive
either CM-RAM with Sensium plus National Early Warning
Score monitoring or monitoring by National Early Warning
Score alone. In a small pilot RCT (n ¼ 51), comparison
showed reasonable correlation between nurse and Sensium-
recorded heart rate (R2 ¼ 0.67; P < 0.001), but poor cor-
relation between these approaches for measurement of respi-
ratory rate (R2 ¼ 0.01; P < 0.001) and temperature (R2 ¼
0.13; P < 0.001).32 Ambient room temperature was thought
to be a confounding factor for the Sensium device, given that
skin temperature measured by thermoresistor sensors can be
affected by environmental factors. Data completeness for
continuous vital signs recorded varied (respiratory rate 31%,
heart rate 59.2%, skin temperature 72.8%) and data losses
were attributed to artefacts from patient ambulation.32 In a
follow-up larger feasibility RCT (n ¼ 136),33 preliminary
clinical outcomes explored included time to antibiotics for
sepsis cases, length of hospital stay, number of critical care
admissions, and rate of hospital readmission within 30 days of
discharge. Time to antibiotics was similar in both arms. Par-
ticipants monitored with Sensium had a shorter average length
of stay: 11.6 days (95% confidence interval [CI] 9.5-13.7
days) vs 16.2 days (95% CI 11.3-21.2 days).33

The VitalPatch, SensiumVitals, and Visi Mobile systems
have also undergone wearability and usability assess-
ments.18,35,36 A pilot RCT of 90 postsurgical patients rand-
omised to CM-RAM using Visi Mobile or VitalPatch for 2 to
3 days found that patients and nurses had overall positive
feelings about both devices: earlier identification of clinical
deterioration, shorter hospital stay, and increased feelings of
safety were frequently mentioned as positive benefits.35 In a
feasibility and acceptability study (30 patients, 23 nurses) of
SensiumVitals compared with VitalPatch and Visi Mobile in
abdominal surgery patients, the majority of patients rated the
Sensium sensor patch as comfortable, felt safer, and would
choose to wear it again when next in hospital.36 Results for
wearability across devices have been mixed and speak to the
need for CM-RAM technologies to be lightweight, unobtru-
sive, and low maintenance. The VitalPatch was rated as pos-
itive owing to its small size and “invisibility” under patient
clothing, whereas the Visi Mobile device was felt by some
patients to be “big” or “heavy” with many cables and a short
battery life.18

Large-scale prospective observational studies of other
hospital-based CM-RAM systems also have shown positive
results. In a before (n ¼ 2139) and after (n ¼ 2263) study of
patients admitted to 2 general medicine wards in the United
Kingdom, Subbe et al.37 examined the effect of automated
continual vital signs monitoring, with relay of abnormal vital
signs to rapid response teams. The Philips Intellivue Guardian
solution (Royal Philips, Amsterdam, The Netherlands)d
featuring cableless transmittance-based finger SpO2 sensor,
oscillometric BP cuff, and respiratory rate derived from
accelerometer and gyroscope sensors applied to the patient,
paired with a bedside spot-check vital signs monitordwas
used to remotely monitor respiratory rate, heart rate, BP, and
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SpO2; temperature was acquired intermittently. During the
intervention period on each ward, notifications to rapid
response teams increased significantly (from 405 to 524; P ¼
0.001), resulting in interventions for intravenous fluid ther-
apy, antibiotics, and bronchodialators.37 Reduction in mor-
tality was also observed from before (n ¼ 173) to after (n ¼
147) intervention (P ¼ 0.042).37 Bellomo et al.38 found
similar results in a before and after study conducted on a
cohort of 18,305 patients across 12 general wards (in 10
hospitals) in Australia, USA, and Europe. The use of the
Guardian system led to an increased proportion of response
team calls related to detection of abnormal respirations (from
21% to 31%, difference 9.9% [95% CI 0.1%-18.5%]) and
improvements in survival following treatment to 90 days or
discharge (from 86% to 92%, difference 6.3 [95% CI 0.0%-
12.6%]).38 The Guardian system was also associated with
significantly decreased nurse time required to record vital signs
(from 4.1 � 1.3 min to 2.5 � 0.5 min, difference 1.6 min
[95% CI 1.4 to 1.8]).38

Some studies have focused on pilot testing these systems in
the home setting, sometimes in combination with environ-
mental ambient sensors. Saner et al.39 tested a multimodal
sensor system in a cohort of 24 community-dwelling seniors
over a period of 1 to 2 years. Vital signs and contextual data
were collected with the use of integrated sensors including a
passive infrared motion-sensing system (Domosafety Ltd,
Lausanne, Switzerland) to detect physical activity, toileting,
refrigerator use and door openings, as well as an upper
armband sensor (Everion; Biovotion, Zurich, Switzerland) to
collect heart rate, heart rate variability, respiratory rate and
skin temperature. An accelerometer (Axivity, Newcastle, UK)
evaluated patient motion.39 A bed sensor beneath the mattress
also collected heart rate, respiratory rate, and sleep quality.
Data were transmitted automatically each night via cellular
network to a secured cloud platform for hosting and anal-
ysis.39 A total of 92,592 person-hours were recorded by the
Everion device over the course of the study. Several episodes
of health deterioration, including worsening heart failure and
heart rhythm disturbances, were captured by sensor signals
from different sources, supporting the idea that multiple
sensor streams holds promise for detecting patient deteriora-
tion and diagnosing health problems at home.39 Participant
feedback supported the use of contactless ambient sensors in
the home, where possible, to reduce feelings of intrusion that
can be associated with wearable devices.39

More recently, Keogh et al.40 investigated the usability of 7
wearable continuous remote patient monitoring devices,
including the CM-RAM Everion solution, by asking 8 older
adults to wear them in their home environment for a mini-
mum of 1 week. Participants thought that lightweight wrist-
worn sensors were the most versatile and easy to use, and
therefore more suitable for longer-term use. Most also agreed
that long battery life was essential: a minimum of 1 week was
considered to be ideal. The need to charge systems daily was
deemed to be unacceptable and was considered a barrier for
extended use of the Everion device.40 Participants expressed
willingness to accept some device-related discomfort, incon-
venience, and intrusion at home for systems perceived as
useful through the provision of real-time feedback on their
health status. Systems designed to only inform remote ob-
servers were perceived as less tolerable.40
ust from ClinicalKey.com by Elsevier on December 27, 
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Some advances are also being made in the use of CM-RAM
systems for acuity prediction in trauma and emergency pa-
tients. Meizoso et al.41 used the MiniMedic wireless vital signs
monitor (MiniMedic; Athena GTX, Des Moines, IA) to
remotely monitor 59 trauma ICU patients to predict shock
index, ie, heart rate O systolic BP.15 Developed by the US
Military, MiniMedic acquires vital signs from small surface
sensors placed on up to 5 patients simultaneously before
wirelessly transmitting these data to monitors carried by any
first responder within a 100-metre range.41 The system in-
corporates an injury acuity algorithm, the Murphy Factor,
that summarises overall patient status, accounting for changes
in vital signs every 30 seconds. Pulse-wave transit time
(PWTT) is used in place of systolic VP.41 MiniMedic sensors
were applied to the forehead and finger of each patient to
measure PWTT, temperature, heart rate, and SpO2, which
were recorded and displayed on a standard bedside monitor
for 60 minutes. Shock index was calculated with the use of
bedside-measured vital signs and compared with the Murphy
Factor. The shock index categorised patients equally as
“routine,” “priority,” and “critical,” whereas the Murphy
Factor overtriaged to “routine” and undertriaged to “crit-
ical.”41 The discrepancies were attributed to erroneous PWTT
estimations of BP. Refinement of the algorithm thus requires
improved accuracy of PWTT measurement or replacement of
this metric with continuous noninvasive BP estimation.41

Liu et al.42 pilot tested the Athena Wireless Vital Signs
Monitor (WVSM) (Athena GTX) to predict the need for
lifesaving interventions in the emergency department (ED)
using data collected from 305 consecutive trauma patients
during transport via helicopter to a level I trauma center.
WVSM records continuous 3-lead (lead II) ECG, intermittent
noninvasive BP, and SpO2; data are transmitted wirelessly to a
mobile device or desktop computer. Participants were rand-
omised to either routine vital signs monitoring with a standard
bedside monitor or to the WVSM.42 The WVSM system
demonstrated better prediction for life-saving interventions
(eg, thoracotomy, cricothyrotomy, pericardiocentesis) per-
formed in the ED compared with standard monitoring (areas
under the receiver operating characteristic curve 0.86 vs 0.81,
respectively). An identified challenge was increased clinician
workload due to lack of integration of the WVSM with the
hospital electronic medical record, resulting in the need for
duplicate documentation. Personnel also recorded the timing
of life-saving interventions manually, which could hinder
precision of future algorithm development owing to the po-
tential for human error and time discrepancies.42

In the hospital setting, feasibility, pilot, and observational
studies reflect continued growth in field of CM-RAM, with
more sophisticated systems capable of real-time simultaneous
integration of multiple vital signs, prediction of patient future
status, and informing clinical decision making. Adequately
powered RCTs with representative patient samples are needed
to make more definitive conclusions about clinical benefits.
The acquisition of accurate vital signs data is technically
challenging in real-world environments, particularly when
measuring continuous respiratory rate. Availability of
continuous noninvasive BP is also a gap as most technologies
are incapable of capturing this metric. The study of CM-RAM
technologies in the home setting is less mature, but the
available data corroborate what has been observed in hospital-
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based studies (ie, to be acceptable and wearable, devices
should be unobtrusive, lightweight, and of perceived clear
benefit to patients). Deployment and utility of CM-RAM
systems can be hindered by lack of attention to these hu-
man factors, as well as interfacing with surrounding infor-
mation systems that can result in increased clinician workload.
Future Directions

Economic evaluation

Few studies have evaluated the effect of CM-RAM
technologies on resource utilisation (hospitalisations,
length of stay, ED visits) and costs.43,44 There are important
considerations for future economic evaluations of CM-
RAM. Analyses may be conducted from the health care
system perspective (ie, resource utilisation components and
costs from the health care system) or from the societal
perspective (ie, all costs and benefits are included regardless
of who incurs costs or benefits, eg, savings in patient-related
travel).45 Different economic evaluation designs and several
analytic approaches can be adopted. It is important to
consider time frame/horizon, patient populations being
targeted, and the number of vital sign parameters moni-
tored.46 In future evaluations, implementation costs should
be subdivided into individual categories (eg, capital costs,
software licenses, maintenance, and upgrades) to measure
the efficiency of CM-RAM programs.46 Additional cost
considerations may also be warranted, depending on system
configuration and workflows. For example, whether clinical
staff would act on system notifications generated through
preexisting health system infrastructure (eg, workstations,
tablets) or on extrinsic mobile devices will have implications
for any potential cost savings.

Big data and advanced prediction modeling

Early warning scores (EWSs) are clinical prediction models
that use measured vital signs to predict likelihood of clinical
deterioration,30,47 using preestablished likelihood thresholds
to trigger a warning so that care can be escalated. Although
EWSs are now ubiquitous and drive several CM-RAM sys-
tems, they can have significant limitations. In a systematic
review describing external validation of EWSs for adult in-
patients, Gerry et al.47 found that all 95 appraised studies were
at high risk of bias. In addition to poor reporting, they
identified several methodologic weaknesses, including limited
sample sizes and event rates, inadequate handling of missing
data and regression models, and focus on discrimination (ie,
ability of the model to stratify patients according to higher or
lower risks of events) rather than on calibration (ie, corre-
spondence between observed and predicted absolute event
rates).47 Moreover, EWSs are static systems, based on the
same predictors and cutoffs across populations, which may be
neither accurate nor efficient.30,47

CM-RAM devices offer a way forward. These systems can
generate gigabytes of biophysical and raw physiologic data on
patients over a 24-hour period,48 allowing for the application
of machine learning models, which are increasingly being
leveraged to harness the potential of patient-centric big data to
develop more complex predictive models.48,49
ust from ClinicalKey.com by Elsevier on December 27, 
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Our group is soon commencing the international ,
Vascular Events in Noncardiac Surgery Patients Cohort
Evaluation (VISION)-2 study, where we will apply the
Vitaliti Continuous Vital Signs Monitor49 by Cloud DX to
20,000 patients undergoing noncardiac surgery for the first 30
postoperative days. Vitaliti continuously measures 5-lead
ECG, heart rate and heart rate variability, respiratory rate,
core temperature (infrared sensor applied to the ear), SpO2,
continuous noninvasive BP and pulse wave velocity. In
addition, the device records multiple continuous high-fidelity
biometric raw waveforms underpinning these metrics (eg,
photoplethysmography for core temperature and BP) that can
be inputted directly into deep learning predictive algorithms.
These signals are collected noninvasively at high sampling
frequencies (eg, ECG at 1 kHz, or 1000 times per second).49

VISION-2 will result in a comprehensive data set suitable
for deep predictive modelling research that overcomes chal-
lenges (eg, missing data, representation biases) experienced by
retrospective machine learning studies that rely on electronic
health record data to train models.50 Moreover, widespread
deployment of 5G broadband cellular networks51 are in
progress across most continents. 5G promises increased
bandwidths and low latency (ie, minimal lag time) commu-
nications to many underserviced areas,51 which will help
support data collection in VISION-2 across participating
collection sites. Our aim is to build classification models for
the prediction of postoperative serious adverse events associ-
ated with mortality including myocardial injury, major
bleeding, sepsis, and infection.52
Conclusion
Technologies that offer continuous multiparameter vital

signs monitoring hold great promise for comprehensive
clinical-grade remote care of patients, beyond what wellness
monitoring can provide. Successful deployment and evalua-
tion of these systems requires an understanding of the archi-
tecture of body sensor networks and related technical and
operational challenges of their use in clinical and home en-
vironments. Scale and spread of these technologies will require
attention to comprehensive economic evaluation. Harnessing
the power of machine learning will advance the science and
practice of CM-RAM for the prediction of critical adverse
events, and provision of timely interventions.
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