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Abstract
Mercury (Hg), a highly toxic environmental pollutant, shows harmfulness which 
still represents a big concern for human health, including hazards to fertility and 
pregnancy outcome. Research has shown that Hg could induce impairments in the 
reproductive function, cellular deformation of the Leydig cells and the seminifer-
ous tubules, and testicular degeneration as well as abnormal menstrual cycles. Some 
studies investigated spontaneous abortion and complicated fertility outcome due to 
occupational Hg exposure. Moreover, there is a relation between inhaled Hg vapour 
and reproductive outcome. This MiniReview evaluates the hypothesis that exposure 
to Hg may increase the risk of reduced fertility, spontaneous abortion and congenital 
deficits or abnormalities.
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1 |  INTRODUCTION

The problem of environmental pollution from mercury (Hg) 
and its effect on human health is currently a global issue.1,2 
Contamination of the biosphere by Hg is mainly caused by 
anthropogenic factors, including coal combustion, mining, 

cement production and chemical industry.3-5 When Hg is 
released into the natural environment, and in groundwater, 
microorganisms including bacteria are often responsible for 
the biotransformation of the metal leading to the formation 
of methylmercury (MeHg).6,7 Methylmercury and ethylmer-
cury (EtHg) are highly hazardous forms that accumulate 
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in freshwaters, ecosystems and food chains, leading to Hg 
exposure in people and other natural living organisms.8-10 
Worldwide, global recognition of the great concern caused by 
Hg pollution led to the adoption of the Minamata Convention 
on Mercury in 2017.11 In July 2017, the 13th International 
Conference on Mercury as a Global Pollutant, which was held 
in the United States, was devoted to integrating Hg science 
and politics in the modern world.12 Key issues for research-
ers and healthcare professionals were (a) environmental risk 
assessment; (b) biomonitoring, focusing on the effects of Hg 
on the health of children; (c) effects on the dental workers 
and general population; (d) interactions with nutrients; (e) 
the risk of EtHg in medical therapeutics; (f) genetic effects of 
Hg; and (g) effectiveness of measures to reduce the adverse 
effects of exposure with Hg.12-15 It follows that additional ef-
forts are needed to integrate the results of scientific research 
with political strategies to obtain the development of appro-
priate management tools. For example, the impact of Hg on 
human reproductive health is of particular concern.16-18 It has 
been demonstrated that chronic exposure to inorganic Hg in 
laboratory hamsters, mice and rats may disturb the oestrous 
cycle,19 impair embryo implantation and hamper follicular 
development.20 Mercury accumulates in the pituitary and thy-
roid glands and the brain.21-23 In rats, ovaries that are exposed 
to mercury oxides (HgO) showed alterations in the tissue his-
tology and morphology, with a strong reduction in the number 
of follicles (either primordial, primary or Graaf follicles).24

In the fruit fly, Drosophila melanogaster, MeHg causes 
disorders in sexual mating. In male and female flies 
treated with MeHg concentrations ranging from 28.25 to 
56.5  μmoles/L, copulation normally occurs, whereas flies 
treated with higher MeHg concentrations, that is, from 113 
to 339 μmoles/L, failed in sexual copulation and cannot go 
ahead in the reproduction.25 While the different government 
regulatory panels for the maximal Hg threshold in the environ-
ment and groundwaters established the range 0.050‐2 μg/L, 
that is, 0.00025‐0.01 μmoles/L, pollution might reach much 
higher values upwards in the food chain; for example, in yel-
lowfin tuna (Thunnus albacares), MeHg load ranged from 
0.03 to 0.82 μg/g wet weight across any individual fish, that 
is, 0.36‐9.84 mg Hg (0.6‐16.4 μmoles/L) for the whole an-
imal.26 Eating a simple can of Hg‐polluted tuna, therefore, 
may represent intakes from 0.01 to 0.287 μmoles Hg, which 
accumulates in the body.27-31

The role of Hg as a toxicant in sexual reproduction and 
pregnancy is quite neglected compared with the great attention 
spent on reports regarding neurotoxicology from this heavy 
metal. Despite some contradictory evidence, the role of Hg in 
human reproduction is going to be a major alarming issue.32-37  
This MiniReview is aimed at analysing the published docu-
mentation about the effects of organic and inorganic Hg in 
human fertility, the outcome of childbirth, congenital abnor-
malities, loss of pregnancy and menstrual disorders.

2 |  INSIGHTS ON THE 
ENVIRONMENTAL INDICES OF 
EXPOSURE OF MERCURY

2.1 | Mercury contents in the air
In order to give insightful evidence about Hg toxicology in 
human beings, firstly, we would like to address its pollution 
dynamics. An indicator of air pollution control in most coun-
tries is used when defining the emission limit of the pollut-
ant. Coal mining and cinnabar mining are the main sources 
of Hg air pollution, particularly in China.38-40 Airborne Hg 
passes a complex transformation cycle and acts as a global 
pollutant. Measurement of Hg content in the air of some in-
dustrial regions of China showed an increase in its levels in 
the range of 99.0‐611 μg/m3.41 During the period from 2025 
to 2030, the Hg emission limit should be reduced to 1 µg/m3. 
To achieve this, alternative energy technologies, as well as 
measures on Hg elimination from the environment, must be 
developed and implemented.42 Study of relevance between 
exposure of pregnant women to industrial air pollution with 
Hg in the United States and low birthweight in the offspring 
showed significantly positive odds ratios (aOR 1.04, 95% 
CI 1.02, 1.07).43,44 In urbanized places where it is employed 
kerosene for cooking, aerial emission of pollutants, includ-
ing heavy metals such as Hg, may affect household micro-
environments, where women and children live daily. Women 
using kerosene showed enhanced cord blood levels of Hg and 
further heavy metals, besides to reduced vitamins such as B6 
and folates (P < 0.05), and moreover, they were associated 
with a reduced newborn weight at the birth, an evidence re-
ported after the correct adjustment of potential confounders 
(β ± standard error (SE) = −0.326 ± 0.155; P = 0.040).44

2.2 | Mercury levels in the soil
The release of Hg from sources into the atmosphere can 
spread over long distances. Most of the environmental Hg, 
particularly in its ionic bivalent form, is localized at the 
site of matrix deposition and causes local environmental 
pollution.42 To regulate the content of Hg in the soil, it 
is necessary to study its accumulation, distribution and 
sources. Soils of Chinese industrial regions have Hg con-
tent ranging from 310 to 3760 µg/kg.43-45 Mercury concen-
tration in rice ranged from 10 to 40 µg/kg, and 43% of the 
samples exceeded the regulatory limit value (20 mg/kg).44 
In anaerobic soils, there are conditions for the production 
of Hg which accumulates in rice and enters the human 
body through food chains. A significant increase of Hg 
concentration is found in drainage waters compared to irri-
gation waters in the ploughing season, which indicates the 
need to reduce the Hg concentration during this period.46 
Mercury contamination of soils is a great concern because 
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of the Hg diffusion in groundwaters.47 The possibility of 
contaminating soil‐related components with heavy metals 
and Hg is, therefore, very frequently associated with the 
risk of Hg intake via raw food.47-50

2.3 | Mercury levels in blood and urine
Biomonitoring of the state of maternal and child health con-
ducted in the framework of the COPHES/ DEMOCOPHES 
project reported that the Hg concentration in the urine of 
mothers living in the city was higher than in rural women.27,51 
Hg concentration in the mother’s hair was higher than in chil-
dren.52 Its level increased in accordance with the number of 
dental amalgam fillings in the children, as well as the con-
sumption of marine and fish products.53 On average, the lev-
els of Hg in the body of the screened persons did not exceed 
the recommended values.

A comparative analysis of Hg concentration in the blood 
of Canadian and Asian women entered to Canada over the 
past 5  years showed that biomarkers of Hg toxicants were 
found in higher concentrations in Asian women. This in-
creased level of Hg in the immigrants was attributed to the 
consumption of seafood, dental amalgam fillings and the use 
of traditional medicines.54

3 |  OCCUPATIONAL EXPOSURE 
TO MERCURY

3.1 | Inorganic mercury
Elemental Hg (metallic Hg0), inorganic Hg salts and organic 
Hg compounds are three different chemical forms of Hg.23 
Elemental Hg (Hg0) can be derived from old clinical ther-
mometers, thermostats, latex paint and dental amalgams.55-57 
In the general population, dental amalgams represent the pri-
mary source of exposure to inorganic Hg.58 Inorganic Hg (Hg 
salts) has been reported in teething powders, cosmetic prod-
ucts, antiseptics, diuretics and laxatives. It can also be in-
duced from the elemental Hg vapour or MeHg metabolism.59

Although inorganic Hg salts have a low absorption when 
ingested, its vapour of elemental Hg0 is accurately absorbed 
by the lungs and could be passed immediately into the brain 
through the blood‐brain barrier.60-62 Hg0 has an important 
role in the global cycling of Hg and critical occupational 
health problems and is rapidly absorbed up to 80% by inhala-
tion and crosses the blood‐brain barrier, and intracellularly it 
is quickly oxidized to ionic Hg2+ which is retained.23,62

3.2 | Dental personnel

Dental personnel are among the professionals that are most 
exposed to Hg in their daily job practice. In many countries, 

dental personnel are still in their daily work exposed to a 
mixture of vapour of elemental Hg and inorganic Hg com-
pounds. This is because of the administration of dental amal-
gam, which consists of 50% Hg.54,63 Numerous studies have 
reported that dental personnel have notable higher mean 
levels of Hg in their blood samples compared to unexposed 
persons, especially in the older age group of dentists and den-
tal assistants.64-66 One study showed that 8% of dentists had 
higher hair Hg levels than 10 ppm, and 25% had a Hg level 
above 5 ppm.59,63

3.3 | Fluorescent lamp production
Workers in fluorescent lamp production are at risk of Hg 
exposure. Fluorescent lamps contain high amounts of Hg. 
The amount of Hg in a lamp varies from about 5 to 50 mg, 
depending on lamp size and the year of production. Newer 
lamps usually contain less than older lamps.67 Only a few 
tenths of a milligram of Hg is required to maintain the va-
pour in a lamp. However, lamps must include more Hg to 
compensate for the part of Hg absorbed by internal parts of 
the lamp. And Hg‐free lamps have considerably lower pro-
duction of visible light, reduced to about half. Therefore, 
Hg is still considered an essential component of efficient 
fluorescent lamps. When a modern fluorescent tube is dis-
carded, the main concern is the Hg, which is a significant 
toxic pollutant. One way to avoid releasing Hg into the 
environment is immediately to combine it with sulphur 
to form insoluble Hg sulphide, which will prevent vapour 
release. Some batteries also contain Hg that prevents the 
buildup of internal gases, although in recent years this use 
of Hg has declined.20,68-74

3.4 | Chloralkali workers
A significant relevance between the Hg concentration in the 
air and current contents in the blood of chloralkali workers 
has been established. The previous limit value for Hg in air 
50  µg/m3 corresponded to 30‐35  µg/L in blood, however, 
with large deviations of values.72 A comparative analysis of 
the excretion of Hg in the urine of chloralkali workers, resi-
dents of sea islands eating much fish and industrial workers 
not exposed to Hg showed that in the first group, the release 
of Hg was significantly higher (median value 15.4, range 
4.8‐35.0 µg/g creatinine) than in the control group (median 
value of 1.9, is 0.4‐5.6 µg/g of creatinine) and in the inhab-
itants of the island (median value 6.5, range 1.8‐21.5  µg/g 
creatinine).75

The study of chromosomal aberrations in the peripheral 
lymphocytes of male chloralkali workers exposed to Hg va-
pour revealed a slight increase in the chromosome and dicen-
tric breaks in groups with a maximum level of Hg exposure 
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or high cumulation of Hg.76,77 Exposure to of Hg appeared 
to increase the level of total testosterone, presumably due 
to increased levels of the steroid‐binding globulin (SHBG). 
However, for prolactin, cortisol and TSH, such a relationship 
was not detected.78,79

4 |  ORGANIC MERCURY

The most important source of exposure to organic Hg in 
human beings seems to be the consumption of fish contami-
nated with MeHg.80 Methylmercury is a bio‐accumulative 
environmental toxicant, although minor behavioural and de-
velopmental effects of elemental Hg have been described at 
concentrations significantly lower than that required for com-
parable effects by MeHg.81-83

The many studies reviewed here found that organic Hg and 
Hg vapour have synergistic and independent developmental 
and toxic effects, along with those of other toxic metals, in-
cluding nickel(Ni), palladium (Pd), gold (Au) and cadmium 
(Cd), and that additional conversions occur in the body be-
tween the different Hg forms.84,85 Methylmercury, derived 
from fish, and dimethylmercury are readily absorbed in the 
gastrointestinal tract. MeHg is slowly demethylated and ox-
idized to Hg2+.86 Once assimilated into the cell, Hg2+ and 
MeHg+ form covalent bonds with glutathione and cysteine 
residues of proteins.87 Organic Hg is found as the most fre-
quent and most hazardous form of exposure to Hg that is fre-
quently identified as EtHg and MeHg. It has been reported in 
different sources such as poultry, fish, fungicides, pesticides, 
insecticides and pharmaceutical preservatives. Although dif-
ferent data suggest that the most frequent exposure to MeHg 
should occur from fish consumption,88,89 there are still people 
believing that exposure to EtHg may come from the admin-
istration of vaccines containing the preservative thimerosal 
that is quickly metabolized to this form, despite the many 
controversies on this issue.90-94

5 |  MERCURY EXPOSURE AND 
FERTILITY: GENERAL ASPECTS

Mercury has a negative role in fertility, both in men and 
women.95,96 In women, infertility is influenced by an imbal-
ance of the female hormonal system due to Hg exposure. 
The progesterone/oestrogen ratio changes in favour of oes-
trogen growth, which inhibits the release of LH‐luteinizing 
hormone. Thus, Hg may induce feminine infertility by in-
creasing the prolactin secretion—analogous to the dopamine 
effect at the pituitary and midbrain level, with negative ef-
fects on galactopoiesis and female genitalia.19,96 Xenobiotics 
such as Hg, xenoestrogens, and synthetic oestrogens are en-
docrine disruptors present in most commercial foods, plastic 

products, tap water, plastic water glass, cosmetics, cleaning 
products, clothes detergents, paints, pesticides and insecti-
cides.97 Careful identification and reducing of endocrine dis-
ruptors, including Hg exposures in everyday life, are essential 
to protect reproductive capacity. An analysis of the relevance 
between the concentration of toxic elements and reproductive 
health in women with reproductive disorders has reported 
that the probability of mature oocytes is oppositely propor-
tional to the Hg concentration in the hair (RR = 0.81, 95% CI: 
0.70‐0.95).98 The concentration of Hg in the hair of 30 sub-
fertile women had a negative correlation with the formation 
of oocytes (P < 0.05) and the number of follicles (P = 0.03) 
after ovarian stimulation, while zinc and selenium levels had 
a positive relationship with these parameters.99

Mercury exposure has also been associated with polycys-
tic ovary syndrome, premenstrual syndrome, dysmenorrhoea 
(menstrual pain), amenorrhoea, early menopause, endome-
triosis, benign breast disorders and galactorrhoea, often as-
sociated with female infertility. Numerous case reports have 
revealed adverse reproductive effects, although cause‐effect 
relations are unproven, and safe exposure levels for Hg in the 
fecund women have not been documented.100-102

Studies have shown that reproductive effects such as de-
velopmental and infertility effects in the infants and foetus 
are at much lower contents and do not have any remarked 
effects on adults. Mercury, in its elementary form (Hg0), as 
well as organic Hg, crosses the placental barrier and reaches 
the foetus, which can cause developmental defects.103

When compared to adults, the newborns and foetus show 
greater sensitivity to the effects of low contents of Hg expo-
sure because of a less effective blood‐brain barrier, higher 
rate of gastrointestinal absorption, less effective renal excre-
tion and low body‐weight with elevated food consumption 
rate per kilogram of body‐weight.63,104

The study of the relationship between prenatal exposure 
to Hg and anthropometric characteristics of newborns con-
ducted by Japanese scientists showed a negative relationship 
between the Hg concentration in the blood of mothers during 
the first and second trimester of pregnancy and the weight of 
children at birth (r = −0.134 and −0.119, respectively, P < 0. 
05). The mean values of Hg in the umbilical cord blood were 
twice as high as in the blood of mothers (P < 0.001). These 
results suggest that pregnant women and women of reproduc-
tive age should avoid even minimal contact with Hg because 
of its potentially adverse effects on foetal development.105,106

In the past, a study revealed that prenatal exposure to Hg 
at 16‐18  weeks of gestation might cause accumulation of 
the Hg in the amniotic fluid and adversely affect the health 
status and children’s cognitive skills since the children were 
approximately 3 years of age.107 As already reported above, 
the main source of maternal Hg vapour exposure is amalgam 
fillings 54 and fish.88,89 These two mercurials are known to 
penetrate the placenta rapidly and then pass into the foetus. 
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Foetal content of Hg after maternal inhalation was reported 
to be over 20‐fold with respect to maternal exposure, which 
has been reported to be a similar dose of inorganic Hg,108 and 
Hg contents in the heart, brain and main organs have been 
reported to be higher after equal levels to Hg vapour exposure 
are compared with the other Hg forms.109,110

Research in areas inhabited by the indigenous people of 
the Russian Arctic (from the Kola Peninsula to Chukotka) 
demonstrated the presence of both global and local sources of 
Hg pollution. Blood levels of Hg in women of reproductive 
age often exceed acceptable international levels.111 The dose 
dependence of unfavourable outcome of the pregnancy and 
foetal development pathology (premature birth, low birth-
weight, miscarriages, stillbirths, congenital malformations) 
from mother exposure to Hg has been revealed. The average 
Hg levels in the blood of mothers with premature births, low 
birthweight, spontaneous abortions are 30% higher in com-
parison with unexposed women. A significantly increased 
relative risk of premature birth and birth of children with low 
body‐weight and spontaneous abortions was found when the 
concentration of Hg exceeded 2 μg/L of plasma.111

As far as for the male reproductive health is concerned, 
even low‐level exposure to Hg shows a negative impact (re-
duced semen quality and changes in sex hormone levels). 
A potential modifying or epigenetic effect of Hg on genetic 
polymorphism has been suggested, especially upon co‐ex-
posure with lead, cadmium and arsenic.112 Exposure to Hg 
vapour induces accumulation of Hg in the testicles, where it 
exerts effects on the testicular steroidogenic and spermato-
genic functions.113 Daily administration of HgCl2 to mice in a 
dose that did not affect body‐weight caused a reduced sperm 
count, modified sperm morphology and lower fertility. It was 
possible to counteract this effect by administering vitamin 
E.114 In vitro effect of HgCl2 on Sertoli cells from rat was 
studied, revealing that concentrations <1  µmol/L of HgCl2 
significantly decreased the production of inhibin. Clinical 
observations have prompted suspicions of associations be-
tween acrodynia (pink disease) and obstructive epididymitis. 
However, good clinical data on the adverse effects of Hg on 
human spermatogenesis are still lacking.57

6 |  INORGANIC MERCURY AND 
FERTILITY

The effect of Hg on fertility was investigated since the nine-
ties, and the topic is to a limited extent updated by Berlin et al 
(2015).57 Here, we will briefly review previous observations.

Rowland et al (1994) noted that exposure to elemental Hg 
vapour or inorganic Hg compounds might affect the fertil-
ity of laboratory animals.115 Inhaled Hg vapour easily passes 
across the placenta to the foetus in human beings and leads 
to adverse effects on the developing foetus also by passing 

through the blood‐brain barrier to the central nervous sys-
tem.64 Hg vapour released from amalgam to the blood of 
pregnant women rapidly passes the placenta and is recovered 
in foetal blood, pituitary gland and liver as well as in the am-
niotic fluid.59,116 A significant correlation has been found be-
tween the Hg level in the infants, foetus, young children, as 
well as mother’s milk and the number of amalgam fillings of 
the mother. The bioavailability of inorganic Hg could be in-
creased in the breastmilk, which was reported to be excreted 
in milk from blood at a higher content in compared with the 
organic Hg.116,117

The binding to albumin is known as the main mecha-
nism for Hg transferring. These studies were reported that 
dental amalgams could be the common source of Hg in 
the foetus and breastmilk for populations without high fish 
consumption and non‐occupationally exposed populations, 
but significant contents of MeHg are also often reported 
in breastmilk.108,116,118 It has been demonstrated that under 
normal Hg circumstances, the levels in mother’s milk should 
be <1.7 μg/L according to the Agency for Toxic Substances 
and Disease Registry staff. This is to be a proper screening 
level for health problem.119-121 Past reports have shown that 
in guinea pigs, rats, hamsters and mice exposed to inorganic 
Hg (1, 2 or 5 mg/kg/d intraperitoneally mercuric chloride for 
1  month), the highest dosage induced cellular deformation 
of the Leydig cells and the seminiferous tubules and testic-
ular degeneration in all species, whereas the lowest dosage 
induced testicular degeneration only in the hamster; partial 
degeneration was also reported in the mouse and rat, and no 
modification was observed in the guinea pig.122 Declined 
levels of testosterone and testicular morphological changes 
were reported in rats orally exposed to mercuric chloride 
(9 mg/kg/d, for 60‐180 days).123 Decreased absolute degen-
erative testicular changes, and relative testicular weight, and 
decreased epididymal sperm count were reported in mice ex-
posed to inorganic Hg by drinking water (4  ppm mercuric 
chloride, for 12 weeks). Also, a protective function of zinc 
was demonstrated.124 Similar data were reported for human 
beings.112 The administration of vitamin E, with mercuric 
chloride (1.25  mg/kg/d) through the gavage for 45  days in 
mice, showed a protective effect against decreased sperm 
motility, viability, epididymal sperm count and induced 
lower Hg content in the epididymis, vas deferens and tes-
tis.114 Furthermore, many of these data have been recently 
confirmed.125-127

7 |  OCCUPATIONAL EXPOSURE 
TO INORGANIC MERCURY AND 
FERTILITY

Some reproductive results, including reduced fertility, con-
genital abnormalities and spontaneous abortion, have been 
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reported as a potential risk of Hg exposure in dental person-
nel.59 For example, 81 women (45 dentists and 36 dental as-
sistants) occupationally exposed to Hg were evaluated for 
reproductive hazards. The study revealed a significant cor-
relation between hair Hg contents and the prevalence of men-
strual cycle disorders.128

A past study with 103 male workers of zinc‐mercury 
amalgam factory, who were exposed to elemental Hg va-
pour, revealed an average blood Hg contents of 14.6  µg/L. 
The outcome of this study reported no significant correlation 
between decreased fertility and Hg exposure.129,130 Another 
study showed yet that 46 exposed pregnant women during 
exposure to inorganic Hg showed a higher frequency of con-
genital anomalies in offsprings.131-133 The prevalence of re-
productive system diseases among Chinese women working 
in industrial enterprises exposed to Hg reached 28.3%. The 
most common diseases were mammary hyperplasia, vaginitis 
and hysterioma (15.54%, 11.25% and 6.77%, respectively). 
A relationship between diseases of the reproductive system 
and exposure to Hg is established (OR  =  1.452, 95% CI: 
1.086‐1.940).134

On the other hand, at paternal urinary Hg levels 
>4000  µg/L, an elevated rate of spontaneous abortions 
among workers exposed to Hg vapour was also reported, al-
though the adverse effect was not significant after controlling 
for previous miscarriage history.135 A trend of elevated rate 
of spontaneous abortions that were related to the paternal uri-
nary Hg contents of 1‐19 and 20‐49 µg/L was reported in a 
study of exposed workers with Hg vapour 136,137; however, 
the study did not report confounding factors, including alco-
hol consumption and smoking.

Industrial emission of Hg in Russia is 47 tons per year; the 
total amount of Hg‐containing waste reaches 0.6‐1 million 
tons. A screening of men working at mining enterprises in 
several Russian regions showed a reduction in erection and 
the quality of sexual acts, ejaculation and quality of orgasm. 
Investigation of spermatic fluid in 30 workers with an experi-
ence of more than 5 years who have not had children in mar-
riage for more than 1 year (infertile marriage) demonstrated 
that only 33.5% of them had normal spermatogram parame-
ters. In 28.5% of all cases, azoospermia and oligozoospermia 
of various degrees were detected (38%).138

8 |  ORGANIC MERCURY AND 
FERTILITY

Exposure of mice to MeHg or inorganic Hg with single 
intraperitoneal injection of 1  mg  Hg/kg body‐weight con-
firmed adverse results on fertility, spermatogenesis and 
testicular morphology, whereas MeHg and, to a lesser ex-
tent, by inorganic Hg decreased the synthesis of DNA in 
spermatogonia.139

Intramuscular administration of MeHg to mice at doses 
10‐20 µg per day for 30 days leads to decrease in the mobility 
and number of spermatozoids, a violation of the tissue struc-
ture of the testes and a decline in the level of testosterone in 
the serum of male mice.114 In monkeys exposed to MeHg (oral 
administration of 25 µg/kg/d for 20 weeks), decreased sperm 
motility and increased abnormal sperm tail morphology were 
observed at subneurotoxic levels; there was no modification 
in serum testosterone and testicular morphology.140,141 In rats 
exposed to MeHg with 0.8, 8.0 or 80 µg/kg twice weekly in 
the diet for 19 weeks, somewhat declined epididymal sperm 
count and markedly lowered intratesticular testosterone were 
reported in the group with high dose of MeHg, whereas in-
verse relevance was noted between testicular Hg content and 
fertility.142 Experimental studies indicate that the addition of 
MeHg to fish food at doses of 0.87‐3.93 micrograms decrease 
their reproductive function. There was a decrease in testos-
terone levels in males of fish and oestrogen in females, and a 
slowdown in the development of gonads in females.143

In contrast, researchers from the United States who stud-
ied the reproductive effects of Hg on pairs of mallards ob-
served that MeHg added to the feed at a dose of 0.5 µg/g, 
resulted in successful incubation of eggs significantly higher 
than in controls (71.8% and 57.5%, respectively), the average 
number of ducklings per female also exceeded the control 
rate (21.4 and 16.8, respectively), their weight was signifi-
cantly higher (87.2 g and 81.0 g, respectively). These results 
suggest a possible hormesis effect for small doses of Hg.144

Since MeHg can pass the blood‐brain barrier, it affects 
the brain, and the foetal brain is evaluated to be the critical 
organ. MeHg easily passes across the placental barrier from 
mother to foetus, thereby increasing the risk of mental retar-
dation and motor disturbance.145,146 A study of the effect of 
MeHg in doses from 1 to 100 nM on the zebrafish organism 
in three generations has shown the correlation of anomalous 
neurobehavioural status (including hyperactivity and visual 
deficit) with sperm epimutations in the F2 generation of adult 
zebrafish. This allows us to assume that exposure to MeHg 
can contribute to the epigenetic inheritance of diseases not 
only in zebrafish (an established human health model) but in 
all species, including human beings.147

A study of Japanese scientists conducted in the residents 
of Minamata City exposed to Hg in the 1950s‐1960s reported 
elevated levels of spontaneous stillbirth and fertility com-
pared with an unexposed population (P < 0.001). There was 
an elevated report in the male proportion among stillbirths, 
which corresponded to a decrease in the proportion of men at 
birth in the late 1950s.148 An investigation of the association 
between fish consumption, Hg content in the hair and sperm 
parameters among 129 men attending reproductive centres 
found that an increase in the Hg level in the hair had a direct 
relationship with the sperm concentration, the total number 
of spermatozoa and their progressive mobility, taking into 
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account the influence of age, index body‐weight, smoking 
and alcohol drinking. This relevance was greater among men 
who had fish consumption higher than the average in the 
population. The volume of the seed and normal morphology 
were not related to the Hg contents in the hair.149

9 |  CONCLUDING REMARKS

Numerous literature data analysed in this MiniReview indi-
cate negative effects of both organic and inorganic elemental 
Hg in relation to fertility, reproductive health and pregnancy 
outcome. Most of the analysed literature referred to experi-
ments on animals, birds and fish due to the difficulty of 
doing such studies in human beings. Exposure to inorganic 
or elemental Hg mainly occurs in professional groups, such 
as dental stuff, industrial workers producing thermometers, 
thermostats, dental amalgams and chloralkali workers. 
Methylmercury enters the human body with fish through the 
food chains. An example of Hg exposure is the Minamata 
disease. The cause of the disease was the prolonged release 
of inorganic Hg into the water of Minamata Bay, which was 
converted by the microorganisms to MeHg.

The effects of Hg on the reproductive function of human 
beings are manifested in both men and women. Mercury can 
alter the shape, movement of sperm and decrease its quantity 
and quality. In men exposed to Hg, a reduction in erection, 
quality of sexual acts and ejaculation was found. Research 
indicates that Hg influences the levels and function of oes-
trogen and reduces fertility in women. Mercury exposure has 
a relation with the polycystic ovary syndrome, premenstrual 
syndrome, dysmenorrhoea, amenorrhoea, premature meno-
pause, endometriosis, benign breast disorders and abnormal 
lactation. In pregnant women, Hg passes through the placen-
tal membrane, which can cause spontaneous abortions, pre-
mature births, congenital disabilities and retardation of foetus 
development.

Future perspectives involve research to prevent risk 
factors for congenital anomalies and identify risk factors. 
Abandoning the use of dental amalgam, which is the essen-
tial source of Hg vapour exposure in the general population, 
would be an important international measure in the decrease 
of Hg exposure.
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