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Abstract  

Alzheimer’s disease (AD) is a debilitating age-related neurodegenerative disorder. Accurate 

identification of individuals at risk is complicated as AD shares cognitive and brain features 

with aging. We applied linked independent component analysis (LICA) on three 

complementary measures of gray matter structure: cortical thickness, area and gray matter 

density of 137 AD, 78 mild (MCI) and 38 subjective cognitive impairment patients, and 355 

healthy adults aged 18-78 years to identify dissociable multivariate morphological patterns 

sensitive to age and diagnosis. Using the lasso classifier, we performed group classification 

and prediction of cognition and age at different age ranges to assess the sensitivity and 

diagnostic accuracy of the LICA patterns in relation to AD, as well as early and late healthy 

aging. Three components showed high sensitivity to the diagnosis and cognitive status of AD, 

with different relationships with age: one reflected an anterior-posterior gradient in thickness 

and gray matter density and was uniquely related to diagnosis, whereas the other two, 

reflecting widespread cortical thickness and medial temporal lobe volume, respectively, also 

correlated significantly with age. Repeating the LICA decomposition and between-subject 

analysis on ADNI data, including 186 AD, 395 MCI and 220 age-matched healthy controls, 

revealed largely consistent brain patterns and clinical associations across samples. 

Classification results showed that multivariate LICA-derived brain characteristics could be 

used to predict AD and age with high accuracy (area under ROC curve up to 0.93 for 

classification of AD from controls). Comparison between classifiers based on feature ranking 

and feature reduction suggests both common and unique feature sets implicated in AD and 

aging, and provides evidence of distinct age-related differences in early compared to late 

aging.  

Keywords: Alzheimer’s disease, Alzheimer’s disease spectrum, early and late aging, linked 

independent component analysis, machine learning  



4 

1 Introduction 

Sporadic Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder strongly 

associated with increased age (Herrup, 2010), with more than 90% of all AD cases diagnosed 

after age 65 (Herrup, 2015). Normal aging and AD share cognitive and neuroanatomical 

characteristics in early stages (Fjell et al., 2013a; Fjell et al., 2014). Thus, discriminating 

between the two phenomena––as well as better deciphering their commonalities––is essential 

for disease-specific intervention and for stratifying groups in clinical trials.  

Magnetic resonance imaging (MRI) may be used to study age-related and 

disease-specific patterns in the gray matter. Traditionally, atrophy of limbic 

structures, and particularly of the medial temporal lobe have been among the MRI 

features that distinguish best between patients with AD and healthy older adults (Fjell 

et al., 2010; Wang et al., 2015). Still, even for the established medial temporal lobe 

atrophy biomarker, accuracy is not ideal for individual AD diagnostics (Lowe et al., 

2013), particularly in older age groups. Diagnostic accuracy of medial temporal lobe 

atrophy varies with the age of the patient, and may be complicated by differential 

effects of early and late brain aging processes (Fjell and Walhovd, 2010; Westlye et 

al., 2010).  

The neurobiological mechanisms of MRI based cortical gray matter loss in 

both aging and across the dementia spectrum, including AD, are multifactorial––with 

e.g., functional, amyloidal, neurodegenerative and metabolic processes affecting brain 

structure differentially in different brain regions (Buckner et al., 2005). Since 

different biological processes that are distinguishable at the microscopic level may 

give rise to highly overlapping brain imaging features on the macroscopic level (e.g., 

cortical thickness), univariate methods, which only consider the observed level (e.g., 

cortical thickness in one region of interest or the volume of a subcortical structure) 
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and not the correlation structure across several MRI features (e.g., the association 

between cortical thickness in one region and hippocampal volume), may not be 

sensitive enough to properly differentiate aging and AD-specific processes. Instead, 

coordinated brain patterns caused by distinct underlying biological processes likely 

require multivariate approaches to disentangle (Doan et al., 2017; Doan et al., under 

review; Douaud et al., 2014; Francx et al., 2016; Groves et al., 2011).  

Linked independent component analysis (LICA) is a promising multivariate 

technique for modeling co-variance across different brain indices or modalities 

(Groves et al., 2011). Unlike alternative supervised approaches such as partial least 

squares (Chen et al., 2009; Sui et al., 2012), which rely on the diagnosis label, LICA 

is fully data-driven and makes use of no demographic or diagnosis information. This 

technique was based on the conventional ICA technique, which assumes the signal to 

be a linear mixture of statistically independent spatial patterns that are non-Gaussian. 

During the optimization process, ICA searches for maximally non-Gaussian patterns 

by iteratively updating the subject loadings, or mixing parameters. LICA allows 

simultaneous ICA decompositions on different measures but constrains the subject 

loadings to be the same across measures (Groves et al., 2012). Given that each LICA 

component describes a spatial pattern of variation over and above variation associated 

with all other components, a particular attractive feature of LICA is that it allows 

identification of structured variance explaining only a small portion of the total 

variability, and which is therefore easily left unidentified when using conventional 

mass-univariate approaches (Doan et al., 2017; Francx et al., 2016).  

Machine learning, or multivariate pattern analysis, offers a powerful option for 

building image-based predictive models useful for computer-aided diagnosis 

(Sabuncu et al., 2015; Westman et al., 2013; Westman et al., 2011). In AD, machine 
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learning has been used for diagnostic classification and clinical score prediction at an 

individual level (Cuingnet et al., 2011; Stonnington et al., 2010), outperforming 

radiological evaluation (Klöppel et al., 2012). A machine learning classifier, which 

can identify multivariate combinations of features that lead to maximal group 

classification or clinical score prediction accuracy, can be used to assess the clinical 

sensitivity of novel MRI features as a whole. Furthermore, the relative contribution, 

or ranking, of a feature used to build such a classifier with respect to all other features 

can also be evaluated to reveal further insights on the brain characteristics involved, 

and to compare the patterns involved in AD and healthy aging. The lasso (least 

absolute shrinkage and selection operator) algorithm, which has previously been 

successfully applied in clinical studies (Cai et al., 2014; Uddin et al., 2013; Wager et 

al., 2011), is efficient in identifying important features and yields shrinkage estimate 

of regression coefficients that potentially lower predictive errors compared to 

ordinary least squares (James et al., 2013). 

With a primary interest in morphological feature extraction, we proposed to 

combine a multivariate data fusion approach with machine learning algorithms in an 

attempt to isolate and characterize MRI based brain morphometric features of the AD 

spectrum sharing commonalities with advancing age as well as disease-specific 

patterns. Rather than building a classification model of AD with maximal accuracy, 

we used machine learning as a means to further evaluate the extracted patterns for 

their differential sensitivity to disease and aging. Specifically, we performed LICA on 

three sensitive and complementary MRI-derived gray matter morphological measures 

(modulated gray matter density maps (GMD) obtained using voxel-based 

morphometry (VBM), cortical surface area and thickness) in a combined sample 

comprising 355 healthy subjects covering large portions of the adult human lifespan 
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(18 to 78 yrs) and 253 memory clinic patients with increasing degree of cognitive 

impairment (subjective cognitive impairment (SCI), mild cognitive impairment 

(MCI)) and AD dementia. In order to assess the generalizability of the multivariate 

patterns and their diagnostic sensitivity across cohorts, we attempted to replicate our 

findings in an independent dataset of well age-matched groups, comprising 186 

patients with AD, 395 patients with MCI and 220 healthy controls (HC) from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI). We included both cortical 

surface area and thickness in the model as they are genetically independent (Panizzon 

et al., 2009; Winkler et al., 2010) and provide complementary information on cortical 

morphology (Hogstrom et al., 2013; Hutton et al., 2009). GMD maps provide an 

indirect measure of gray matter volume enabling assessment of subcortical structures, 

such as the hippocampus. Furthermore, surface area and thickness contributes to only 

a proportion of the variance in GMD, as shown in schizophrenia studies 

(Palaniyappan and Liddle, 2012). Thus jointly analyzing the three measures would 

likely increase the sensitivity to clinical variance, and also provide more nuanced 

information on regional brain patterns. 

In line with recent studies using LICA, we expected one or more widespread 

components capturing global cortical features with strong relationships with age 

(Douaud et al., 2014; Groves et al., 2012). By including an adult lifespan sample as 

well as a broad range of patients with AD and its clinical precursors, we investigated 

the assumption that AD is both associated with aging-related, as well as disease-

specific brain patterns. We hypothesized that LICA would allow for identification of 

both common and differential features of AD and aging. Further, we hypothesized 

that feature sets informative for AD classification would be more similar to the 

feature sets involved in late compared to early aging. To test the clinical sensitivity of 
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the LICA multivariate patterns at an individual level, and to assess their relative 

involvement in AD and healthy aging, we used machine learning to perform pairwise 

clinical group classification, and prediction of cognition and age at different age 

ranges. Finally, we compared the feature importance in the resulting clinical group, 

cognition and age classifiers to assess the brain morphological overlap between these 

different phenotypes.  

2 Materials and Methods 

2.1 Participant recruitment and screening 

For our discovery sample, cross-sectional patient data were obtained from the “Norwegian 

registry for persons being evaluated for cognitive symptoms in specialized care (NorCog)”. 

NorCog is a national patient registry comprising consecutively enrolled patients referred to 

one of 27 participating memory outpatient clinics for workup of suspected cognitive 

impairment or dementia. The patients in the present study were recruited from one of the 

centers, the memory clinic at Oslo University Hospital between 2010 and 2014. Included 

patients were assessed in accordance with an extensive standardized clinical examination 

protocol (Braekhus et al., 2011), and referred to the same brain MRI as healthy controls. Two 

experienced memory clinic physicians diagnosed the patients according to research criteria in 

consensus (K.E./A.B., or M.L.B./K.P.). Only patients fulfilling International Classification of 

Diseases, 10th Revision criteria for AD (N=137; World Health Organization., 1993), and the 

Winblad criteria for MCI (N=78; Winblad et al., 2004), as well as patients referred with a 

subjective cognitive complaint that did not fulfill MCI or dementia criteria, termed SCI 

(N=38; Garcia-Ptacek et al., 2014) were included. Degree of cognitive impairment was 

quantified using the results of the MMSE from the clinical assessment. Additional descriptive 

information is summarized in Table 1. 
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Healthy controls were included retrospectively from two concurrent projects 

(STROKEMRI and TOP) using the same MRI scanner and pulse sequences as the patients. 

For STROKEMRI (Dørum et al., 2016; Dørum et al., 2017), healthy controls (18-78 yrs, 

N=52) were recruited through a newspaper ad and social media. Exclusion criteria included 

estimated IQ < 70, previous history of alcohol-and substance abuse, history of neurologic or 

psychiatric disease, participants presently on any medication significantly affecting the 

nervous system and contraindications for MRI. All participants were self-sufficient and living 

independently, and reported no reason to suspect marked cognitive decline or undiagnosed 

dementia. For TOP, healthy controls (18-46 yrs, N=303) were invited after a stratified 

random selection drawn from the Norwegian National Population Registry. All underwent 

initial interview where demographic and clinical information was obtained. Exclusion criteria 

included a history of head trauma with loss of consciousness of more than 10 minutes 

duration, moderate to severe psychiatric or somatic disease, first-degree relatives with mental 

illnesses (schizophrenia, bipolar disorder, and major depression disorder), excessive 

substance abuse during the last 12 months, or not being able to perform an MRI scan. Blood 

samples were taken for standard hospital hematological screening to rule out on-going 

illnesses and a urine sample was collected to screen for substance abuse. No MMSE 

examination was performed for the healthy controls, but all subjects underwent 

neuropsychological screening. For post-hoc and classification analyses, and also for data 

visualization the healthy controls were divided into two groups: healthy young adults (18 yrs 

< HCY < 45 yrs), and healthy middle-aged and older adults (HCO >= 45 yrs, Table 1) such 

that the HCO group was both of reasonable size and as age-matched as possible to the 

clinical groups (MCI, SCI and AD).  

For the replication sample, we included age-matched groups from the ADNI1 cohort 

(AD: N=186, mean age = 75.2 ± 7.5 yrs, range 55-91 yrs, Nfemale=89; MCI: N=395, mean age 
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= 74.7 ± 7.4 yrs, range 54-89 yrs, Nfemale=140; HC: N=220, mean age = 75.9 ± 5.1 yrs, range 

60-90 yrs, Nfemale=108). These data were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, positron emission tomography, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. More details about the ADNI sample can be seen in (Jack et al., 2008; Petersen et 

al., 2010; Weiner et al., 2010). 

2.2 MRI acquisition 

A 3 Tesla GE Signa HDxT scanner at Oslo University Hospital was used to collect MR data 

using two different head coils (8-channel head coil  (8HRBRAIN) and the Head/Neck/Spine 

(HNS) coil, N per group is given in Table 1). A T1-weighted 3D Fast Spoiled Gradient Echo 

(FSPGR) sequence was used with the following parameters: repetition time (TR) = 7.8 ms, 

echo time (TE) = 2.956 ms, inversion time (TI) = 450 ms, flip angle 12°, matrix = 256 x 256 

mm, in-plane resolution=1x1mm, slice thickness=1.2mm; acquisition time=7min 8s, 166 

sagittal slices. Details regarding MRI acquisition of the ADNI sample can be seen in (Jack et 

al., 2008). 

2.3 Image preprocessing 

T1-weighted scans were processed using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu) 

to estimate vertex-wise cortical thickness and surface arealization (Dale et al., 1999). All 

datasets included in this study passed a rigorous quality control procedure, which included 

visual assessment of the segmentations, minor manual intervention to correct for 

segmentation errors wherever deemed applicable, and exclusion of datasets with significant 

low quality due to e.g., motion artifacts. Surface maps were resampled to a common 

coordinate system (fsaverage5, 10242 vertices) using a non-rigid high-dimensional spherical 
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averaging method to align cortical folding patterns (Fischl and Dale, 2000). Cortical 

thickness and surface area maps were smoothed using a Gaussian kernel with a commonly 

used full width of half maximum (FWHM) of 15 mm and 10 mm, respectively. Total 

hippocampus volume was also estimated based on FreeSurfer subcortical segmentations for 

post-hoc correlation analysis with the components implicating this structure.  

GMD maps were derived using FSL-VBM (Douaud et al., 2007), an optimised VBM 

protocol (Good et al., 2002) carried out with FSL tools (Smith et al., 2004). First, structural 

images were brain-extracted and gray matter-segmented before being registered to the 

MNI152 standard space using non-linear registration (Andersson et al., 2007). The resulting 

images were averaged and flipped along the x-axis to create a left-right symmetric, study-

specific grey matter template. Second, all native grey matter images were non-linearly 

registered to this study-specific template and "modulated" to correct for local expansion (or 

contraction) due to the non-linear component of the spatial transformation. The modulated 

gray matter maps were smoothed with a sigma of 4 mm (FWHM=9.4 mm). Note that 

although GMD-maps are interpreted as measure of cerebral GM, the FSL-VBM GM-

segmentation did include white matter (WM)-voxels as revealed by manual inspection and 

overlap with template atlases, thought to result from the probability based nature of the 

segmentation scheme itself and age-related decreases and blurring of GM and WM contrast. 

For a comparison with the multivariate features, we summarized the cortical 

thickness, surface area using FreeSurfer’s Desikan- Killiany atlas (Desikan et al., 2009) and 

the GMD maps using the AAL atlas (Tzourio-Mazoyer et al., 2002) (mean value for 

thickness, GMD and sum for surface area within each ROI and whole brain), resulting in a 

total set of 262 univariate features, hereafter referred to as FS-VBM feature set. In addition, 

we performed a principle component analysis (PCA) on the FS-VBM set after normalizing all 

features (mean-centering and scaling to have a standard deviation of 1). We then kept the 
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PCA components (n=136) that explained in total 95% of the variance. The FS-VBM and 

PCA feature sets were used in multivariate group classification and age prediction (see below 

and in Supplemental information (SI)).  

2.4 Linked independent component analysis 

We performed a data-driven decomposition of the imaging features into independent 

components using FMRIB’s LICA (FLICA, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA), 

which models the inter-subject variability across measures (Groves et al., 2011; Groves et al., 

2012). A LICA component, characterized by its spatial maps and the subject weights that are 

shared across measures, may involve multiple or only one measure. A model order of 50 was 

chosen based on previous studies (Francx et al., 2016; Groves et al., 2012), resulting in a 

biologically meaningful yet manageable set of patterns. We assessed the effect of model 

order on the multivariate group classification and age prediction described below. 

Furthermore, at different model orders, we performed exploratory hierarchical clustering of 

the subjects and evaluated the resulting clusters using the cophenetic correlation coefficient 

(Farris, 1969). The results suggest that a model order of 50 was a suitable choice for the data 

(more details in SI). After visual inspection of the spatial maps, we excluded three 

components that showed strong head coil effect from further multivariate analyses. 

Additionally, we performed a comparison between ICA decomposition using either 

thickness, surface area or GMD maps, and LICA using all three measures simultaneously and 

presented the results in SI. Briefly, empirical results with the LICA components showing 

increased sensitivity to AD and superior classification performance in most cases (Fig. S10) 

provided supporting evidence for the benefits of combining these complementary measures 

using LICA. 
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2.5 Statistical analyses 

2.5.1 Univariate analyses 

Diagnostic associations with each of the component’s subject loadings were tested using 

general linear models (GLM), and partial correlations with MMSE were tested, covarying for 

age (using second order orthogonal polynomials to account for linear and quadratic effects), 

sex and head coil (both as factorial variables). Effect size of group pairwise comparisons in 

subject loadings was standardized using the Cohen’s d as follows: !"ℎ!!!!!! = ! !∗!√!", where t 

was the t statistics and df the degree of freedom of the residuals.  We also tested for main 

effects of age and head coil in the same GLM. For the components showing significant age 

effects, we performed local polynomial fitting (LOESS) (Weisberg, 2005) of age against the 

subject loadings and computed R2 as a measure of goodness of fit. The components capturing 

strong head coil effects were visually inspected; those reflecting non-anatomical spatial maps 

were considered noise and excluded from subsequent analyses.  

2.5.2 Multivariate classification and predictions 

To evaluate clinical sensitivity of the derived multivariate patterns at an individual level, we 

submitted the LICA features (N=47 after QC) to pairwise classification among the AD, MCI, 

SCI and HCO groups using the lasso classifier as implemented in the glmnet R package 

(Friedman et al., 2010). To account for effects of normal aging while avoiding removing 

disease-related effects associated with advancing age (Doan et al., 2017; Dukart et al., 2011; 

Koutsouleris et al., 2015), prior to classification, we estimated the age effects using the 

combined sets of HCY, HCO and SCI subjects by means of GLM with age (second order 

orthogonal polynomial) as the only independent variable. The resulting GLM model was used 

to compute the residuals of each feature on all datasets, including MCI and AD. We merged 

the SCI with the control groups to increase the sample size, especially at the elderly range, 

since classification between SCI and HCO showed chance level accuracy, indicating that 
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there were no notable neuroimaging phenotypic differences between these groups. We then 

normalized each feature such that it had zero mean and a standard deviation of 1.  

In an attempt to disentangle the differential involvement of the LICA features in 

presumably healthy aging and dementia, respectively, we applied the lasso regression 

(Friedman et al., 2010) to predict age at different age ranges and compared the feature 

ranking obtained from the age prediction to the ranking obtained from pairwise group 

classifications. To be able to address the relation between dementia and aging in terms of the 

brain structural underpinnings, we only used subjects from the HCO, HCY and SCI groups 

for age prediction. We split these subjects into two groups at beginning of middle age (45 

years, according to the National Library of Medicine’s definition of middle age): one group 

with an age range of [18;45 yrs]), referred to as the early aging group, and one with an age 

range of [45;90 yrs], late aging. We performed age prediction on both early, late and full age 

range groups. We also used the lasso regression to predict MMSE within each of the clinical 

groups (AD, MCI, SCI). Whereas the raw features were used in age prediction, to account for 

possible confounding effects of normal aging in MMSE prediction, we used the same 

residualized features as those used for group classification.  

To compare the involvement of the LICA features across classifiers, for each group or 

age classifier, we ran the same classification (or prediction) after incrementally removing a 

number of features (n=1,2,3,4,5 etc.…). The features excluded in each iteration were 

determined based on feature importance information derived from a reference classifier. For 

instance, when running AD versus HCO classification referring to the Age_18_45 (early) age 

classifier, we (1) ordered the LICA feature using the feature importance (standardized 

regression coefficient values) returned by the Age_18_45 classifier, (2) incrementally 

removed features starting from the most important features, ran AD versus HCO 

classification and computed the performance, (3) repeated the above procedure for each of 
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the classifiers (including AD versus HCO) as a reference classifier. If the classifiers were 

similar in terms of the features involved, then the performance would have a similar decay 

profile, and vice versa different performance profiles would be observed if they were 

different.  

To assess the predictive power of each of the components sensitive to diagnosis in 

terms of group classification and age prediction compared to using all LICA features, we 

repeated the same classification and age prediction as described above. However, instead of 

using all LICA features, we used each of those components as the only feature and the linear 

regression classifier.  

We used k-fold cross-validation to estimate the classification performance. For each 

classification, all datasets involved were split into k partitions of equal size. One partition was 

left out for validation (the testing set). The classifier was then built using the (k-1) remaining 

partitions, on which another k-fold cross-validation was applied to estimate the regularization 

parameter λ. As the group size was highly imbalanced in most cases, to alleviate 

classification bias toward higher accuracy on the majority class, we balanced class size of the 

training set (the testing set remained untouched), based on a resampling technique as 

implemented in the ROSE R package (Lunardon et al., 2014). The trained classifier was then 

applied on the left out partition. This process is repeated for each of the partitions. We chose 

the commonly used value of 10 for k (James et al., 2013). The entire process was repeated N 

times (N=100, chosen as an arbitrarily large number) and the average performance (balanced 

accuracy (Brodersen et al., 2010), accuracy, specificity, sensitivity, and area under the 

receiver-operator characteristics curve (AUC)) was computed. We inferred the relative 

feature importance (ranking) in a classification using the magnitude of the standardized 

regression coefficients averaged across folds and repetitions. The same k-fold cross-

validation setup was used for group classification and age/MMSE prediction. All models 
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built for group classifications, age and MMSE predictions are coherently referred to as 

classifiers. 

Lastly, for a comparison between multivariate LICA features and univariate FS-

VBM, PCA features, we applied the same group pairwise classification and age prediction as 

described using either the FS-VBM or PCA feature sets and compared the performance 

obtained with LICA features to the resulting performance. The results are presented in SI.  

LICA decomposition was performed in Matlab (version R2014a). All statistical and 

machine learning analyses were performed in R (http://cran.r-project.org, version 3.2.1)). The 

glmnet (Friedman et al., 2010) and caret (Kuhn, 2008) R packages were used for 

classification and prediction, and the ggplot2 package (Wickham, 2009) for visualization. We 

corrected for multiple statistical comparisons using permutation testing (details are presented 

in SI) and used a significance threshold of 0.05. The p-values reported throughout the 

manuscript are corrected based on permutation testing, unless stated otherwise.  

2.6 Replication analyses using ADNI  

The T1-weighted images of the replication sample were processed using the same 

preprocessing pipeline, including LICA decomposition (model order of 50), as described 

above. Subsequently, we assessed the similarities between the resulting LICA patterns and 

those obtained from the discovery sample by correlating the corresponding spatial maps. We 

repeated the GLM analyses to study the main effect of diagnosis, accounting for age and sex. 

Further, we also repeated the classification analyses between AD, MCI and HC using the 

nested k-fold cross-validation framework as described above.  

2.7 Ethics 

The Regional Committee for Medical Research Ethics in South-Eastern Norway approved the 

study. All participants gave written informed consent. Patients were only enrolled if 

determined to have capacity for consent by the evaluating physician.  
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3 Results 

Results on the main effects of diagnosis and age on the components' subject loadings are 

presented in Fig. 1 and Fig. S1 for the discovery and replication samples, respectively. 

Results for pairwise group comparison for the two samples in terms of Cohen’s d are detailed 

in Fig. S2. Fifty independent components (IC) were derived for both samples. Unless 

otherwise stated, the components’ indices presented and discussed refer to those obtained 

from the discovery sample.  

3.1 Three spatial components relate to clinical diagnosis, with consistent patterns across 

independent samples  

IC0, IC5, and IC9 (spatial maps and subject loading distribution presented in Fig. 2A-B), 

explaining 24.4%, 1.7% and 1.39% of the data variance (Fig. S3), respectively, showed 

strong effects of diagnosis. IC3rep, IC4 rep, IC8 rep (rep = replication sample; spatial maps and 

subject loadings presented in Fig. 2C-D) also showed significant diagnosis effects (Fig. S1) 

and resembled IC0, IC5 and IC9 (Fig. 2A-B), respectively, in the discovery sample (IC3rep 

versus IC0: rthickness=0.66, rGMD=0.69; IC4rep versus IC5: rthickness=0.95, rGMD=0.74; IC8rep 

versus IC9: rthickness=0.57, rGMD=0.3, Fig. 2A-C). We found a consistent graded pattern of AD 

< MCI < HCO, SCI or HC across cohorts, as visually indicated by the boxplots in Fig. 2.  

We note that IC4 and IC37 also showed significant main group effects (Fig. 1) in the 

discovery sample. However, since IC4 showed a strong effect of head coil (F=36.9, Fig. S3) 

and both IC4 and IC37 did not show significant group pairwise differences (Fig. S2), we 

chose to withhold these components from further univariate analysis.  

IC0 reflected global thickness variation co-occurring with GMD variation in opposite 

weightings (positive at subcortical structures, the lingual- occipital cortex, and negative at 

frontal white matter and temporal cortex; AD < MCI, SCI, HCO). IC5 showed a pattern of 

lower medial temporal lobe (MTL) thickness and hippocampal reductions in AD compared to 
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MCI and SCI (d=-0.27, -0.32, respectively). This component showed an association with 

hippocampus volume with a significant group by hippocampus volume interaction, showing 

the steepest slope within AD (rAD=0.39, p=1.809x10-06; rMCI=0.05, p=0.67; rSCI=0.21, p=0.2; 

rHCO=0.04, p=0.83; rHCY=0.12, p=0.03, accounting for age, sex and estimated intracranial 

volume).   

IC9 revealed an anterior-to-posterior graded pattern reflecting relatively decreasing 

thickness and GMD along the posterior-anterior axis, representing structural variation over 

and above all other components (AD < MCI, SCI, HCO, Cohen’s d = -0.64, -0.56, -0.61, 

respectively). The observed lower subject loadings in AD compared to controls reflect a shift 

of the thickness and GMD distribution towards a stronger anterior compared to posterior 

weighting. The positively weighted regions largely comprised the lateral posterior aspects of 

the temporal lobe, precuneus, and posterior cingulate cortex, indicating greater cortical 

atrophy in these regions in AD.  

3.2 The diagnosis-related components show variable relationships with age 

Fig. 3 plots subject loadings as a function of age for IC0, IC5, IC9 as well as for the 

corresponding IC3rep, IC4rep, IC8rep of the replication sample. Age scatter plots for other 

components in the discovery sample (IC1,3,7 and 14), which showed significant main effects 

of age (defined as p < 0.05; R2 ≥�0.1), are presented in Fig. S4. In the discovery sample, 

among the three diagnosis-related components, IC0 showed a strong monotonic decrease 

with age (R2=0.83 across all groups and 0.68 across HCO, HCY and SCI), reflecting cortical 

thinning and bidirectional (decrease-increase) GMD alterations as a function of age. IC5 on 

the other hand showed quadratic effect of age (F=35.8, p<0.001) with a modest fit of R2=0.13 

across all groups. Notably, the fitted curve across HCO, HCY and SCI (Fig. 3A, blue) 

depicted an increase in subject loadings from early until middle age. The curve then saturated 

during middle to late age. When additionally including MCI and AD in age fit, the curve 
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(red) decreased during middle to late age, suggesting a specific involvement of AD on IC5 in 

late aging.  

IC9 was not significantly related to age (F = 4.8, p=0.35, R2=0.01). Interestingly, 

whereas there was no significant correlation between IC9 and age within MCI, SCI or HCO 

(t=-1.8, 0.9, 1.7, Cohen’s d=-0.42, 0.3, 0.64, p>0.05, respectively), there was a trend of 

positive association within the AD group (t=3.6, d=0.63, p=4.5x10-4, uncorrected) indicating 

that the younger AD patients showed larger difference in subject loadings with respect to the 

other groups than the older AD patients (Fig. 3B).  

In the replication sample, whereas IC3rep was strongly correlated with age (F=262, 

p=1x10-5), IC4rep and IC8rep only showed moderate or weaker correlation with age (IC4rep: 

F=37, p=1x10-5; IC8rep: F=14, p=0.012). The same pattern of age-by-group interaction 

observed in IC5 and IC9 of the discovery sample was also seen in IC4rep and IC8rep with the 

AD group showing a negative (t=-4.5, d=-0.67, p=9.8x10-6, uncorrected) and positive (t=5.9, 

d=0.87, p=1.8x10-8, uncorrected) association with age, respectively, and the other groups 

showing no association (except MCI within IC4rep: t=-4.1, d=-0.41, p=5.9x10-5, uncorrected). 

3.3 Independent components capture structural variation due to differences in scanner 

hardware 

IC4, IC8, IC12 and IC19 showed large effect of head coil (IC4: F=36.9, IC8: F=218.8, IC12: 

F= 144.9, IC19: F=60.5, p < 0.001, Fig. S5). Visual inspection of the spatial maps (Fig. S6) 

confirmed that IC8,12,19 appeared to be non-anatomical and were removed from further 

analyses.   
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3.4 Multivariate analyses on LICA subject loadings 

3.4.1 Pairwise group classification 

Table 2 shows the results from the group classifications. In the discovery sample, 

classification performance was high for AD versus MCI (AUC=0.80, sensitivity = 0.73, 

specificity = 74), AD versus SCI (AUC=0.85, sensitivity = 0.79, specificity = 76), while 

being not different than chance for MCI versus SCI (AUC=0.53, sensitivity = 0.52, 

specificity = 0.46, p>0.05, permutation testing). The classifier showed very good 

performance for classification of AD versus HCO (AUC=0.87, sensitivity = 0.82, specificity 

= 0.76), and chance level accuracy for classification of MCI or SCI versus HCO. Across all 

classification pairs, relatively balanced sensitivity and specificity were observed.  

When used alone, IC9 showed higher and comparable classification performance 

compared to IC5 and IC0, respectively. In particular, IC0 yielded an AUC of 0.73, 0.77 and 

0.84 for AD versus MCI, SCI, and HCO, respectively. IC5 yielded an AUC of 0.62, 0.69 and 

0.57. IC9 yielded higher performance than IC5 in all cases and higher than IC0 for AD versus 

MCI, SCI (AUC=0.77, 0.79) and lower for AD versus HCO (AUC=0.83) (all tested via 

bootstrapping with stratified sampling with replacement and 10000 iterations, p<0.0001).  

In the replication sample, classification results (AUC = 0.93, 0.71, 0.70 for AD versus 

HC, AD versus MCI, MCI versus HC, respectively, Table 2) showed a similar performance 

as obtained in the discovery sample, although slightly higher for AD versus HC, MCI versus 

HC and lower for AD versus MCI. 

3.4.2 Age prediction 

Fig. S8B shows the prediction performance (R2) for the multivariate age predictor of the 

early, late, and full age ranges (R2=0.42, 0.62, 0.77, respectively). The performance was 

lower for narrowed age ranges. Fig. 4 shows the relevant feature importance. IC9 showed a 

weak contribution to the age prediction across all age ranges, whereas IC0 was the most 
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important feature for all age classifiers. The MTL pattern (IC5) appeared to show different 

involvement at different age ranges. Specifically, whereas it showed strong contribution in 

early aging (β=0.20, rank=4) prediction, there was no contribution from this component at 

late aging (β � 0), indicating that this component is not sensitive to age at the elderly age 

ranges. Similarly, IC3 and IC7 (reflecting global thickness and superior cortical thickness, 

respectively, Fig. S7) were sensitive to early but not late aging. Conversely, IC1 (reflecting 

global surface area), IC14 (ventricular enlargement) and IC27 (middle frontal surface area 

and GMD) (Fig. S7) were among the most important features in late but not early aging.  

 When used alone, whereas IC0 yielded moderate age prediction performance (R2=0.2, 

0.49, 0.65 for early, late and full ranges, respectively) compared to using all LICA feature, 

IC5 showed modest and no predictive power at early (R2=0.09) and late (R2=0.002) ranges, 

respectively, and IC9 showed no predictive power (R2=0.003, 0.03). 

3.4.3 Associations with cognition and MMSE prediction  

IC0, 5, and 9 correlated positively with MMSE within AD (IC0: partial r = 0.33, p=9x10-5; 

IC5: r = 0.24, p=0.0045; IC9: r = 0.39, p=1.59x10-6, Fig. S9), indicating that individual 

differences in these components in AD patients are associated with disease severity. IC5 also 

correlated positively with MMSE within SCI (r=0.44, p=0.0068, Fig. S9). No significant 

association was found within MCI. In terms of prediction, an R2 of 0.12 (r=0.35, p <0.05, 

permutation) was observed between the predicted and observed MMSE within AD, in line 

with the univariate results. IC5 and IC9 were the most important features (Fig. 4). A poor 

performance was observed within MCI and SCI (R2=0.03 and 0.01, respectively).  

3.4.4 Comparisons between clinical and age classifiers 

The most important features (n=5) as indicated by the standardized regression coefficients 

(Fig. 4) were IC0,5,9,21,37 for AD versus MCI, IC0,5,9,37,46 for AD versus SCI, 

IC0,7,9,21,37 for AD versus HCO, IC0,3,5,7,28 for early age prediction, IC0,1,14,27,40 for 
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late age prediction. The classifiers AD versus MCI and AD versus HCO shared 4 out of 5 

most important features (IC0,5,9,37), and all three classifiers AD versus MCI, SCI, HCO 

shared 3 out of 5 most important features (IC0,9,37), whereas there is one common feature 

among the set of most important features between late age prediction and the group 

classifiers (IC0) and two between early age prediction and the group classifiers (IC0,5). 

 Whereas in the age classifiers, IC0, IC1, IC3 (global thickness, Fig. S7) were the main 

predictors (effect of other ICs were either zero and very weak), in clinical group 

classifications, although IC0, IC5 and IC9 were the main predictors, there was considerable 

effect from other components, for instance IC37 (basal ganglia GMD, Fig. S7) in AD versus 

MCI,SCI, IC7 (superior cortical thickness, Fig. S7) in AD,MCI versus HCO, and IC31 

(temporal pole area and GMD, Fig. S7) in AD,MCI,SCI versus HCO. 

IC0 was the most important feature for classification of AD versus MCI, SCI and 

HCO as well as for the age and MMSE classifiers. Both IC5 and IC9 showed importance in 

classification between AD and MCI, SCI, HCO with IC9 showing higher contribution than 

IC5. IC5 was important to early but not late age prediction, while but IC9 showed almost no 

contribution to either early or age prediction (Fig. 4). 

Fig. 5 presents performance profiles when comparing among the group (AD versus 

MCI, SCI, HCO) and age classifiers (early, Age_18_45 age prediction, and late, Age_45_90 

age prediction). When excluding features based on its own feature importance, Age_18_45 

dropped to a low performance (R2<0.1) after excluding the first five most important features, 

while Age_45_90 after the first one. The group classifier dropped the performance to chance 

level (0.5) after excluding a larger number of important features (approximately 12, 7 and 8 

features for AD versus MCI, SCI and HCO, respectively). The group classifiers, when 

referring to each other, showed similar profiles, whereas highly different performance 

profiles were observed, mostly reflecting a drop after IC0 was excluded, when referring to 
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the age classifiers. Similarly, the performance profile of the age classifiers showed 

considerable difference when referring to the group classifiers compared to when referring to 

their own feature importance rankings. Within the age classifiers, the performance profile of 

the early age classifier changed considerably when referring to late age classifier, reflecting a 

drop in accuracy after IC0 was dropped and then stayed rather stable. Unlike the early age 

classifier, the performance of the late age classifier dropped significantly after IC0 was 

excluded.  

4 Discussion 

Using a data-driven multivariate approach, we found distinct brain patterns that are sensitive 

to clinical status and useful for AD classification. The patterns included both age-related and 

disease-specific modes of gray matter variation related to AD, which were consistent across 

the discovery and replication samples. A global thickness and gray matter density pattern 

represents a common shared feature between aging and AD. Disease-specific features 

included an anterior-to-posterior thickness and gray matter gradient, and medial temporal 

lobe atrophy in late age. The reported multivariate patterns also showed moderate predictive 

value for cognitive status in AD patients. Using machine learning, we attempted to 

disentangle dementia from normal aging and report evidence of differential involvement of 

morphological patterns useful for age prediction during different parts of the adult lifespan 

and clinical status classification, supporting the hypothesis of different biological 

mechanisms underlying normal brain aging and AD-related neurodegeneration.  

4.1 Patterns sensitive to clinical diagnosis 

The global IC0 was both sensitive to age and diagnosis suggesting common mechanisms. IC0 

was characterized by a well-known pattern of widespread cortical thinning (Douaud et al., 

2014; Groves et al., 2011). A bidirectional pattern of GMD including anterior temporal 
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increases was also seen. The nature of the bidirectional GMD-pattern is unknown, but the 

finding suggests a regional variation in the relationship between thickness and GMD, and 

may be related to variable age-differences in tissue intensity and contrast (Salat et al., 2009; 

Westlye et al., 2010). More research is needed to understand the biological relevance of 

GMD. 

 IC5 reflected a characteristic morphological pattern primarily encompassing the 

MTL, implicating coordinated cortical thickness and GMD reductions in the entorhinal 

cortex, parahippocampus, hippocampus and the insular cortex in AD. The neuroanatomical 

distribution of this component is consistent with one of the most established neuroimaging 

biomarkers of AD, and the curvilinear age trajectories (Ostby et al., 2009; Walhovd et al., 

2011) and the moderate correlation of the subject weights with hippocampus volume suggest 

that this component is partly reflecting the volume of the hippocampal structure along with 

other and coordinated MTL structural differences. Although numerous studies have 

implicated the MTL as a sensitive marker in differentiating AD from MCI and HC 

(Dickerson et al., 2009; Duara et al., 2008; Frisoni et al., 2010), the present results support 

the notion that MTL atrophy is not very specific for AD (Fjell et al., 2013a; Likeman et al., 

2005).  

While being discriminative, the MTL component (IC5, Fig. 2) was outperformed by 

IC0 and IC9 on its discriminative power in differentiating between AD and MCI, SCI and 

HCO. Singh et al. observed widespread cortical thinning with significant extension into the 

lateral temporal lobe associated with disease progression from MCI to AD (Singh et al., 

2006). The associations of IC0 and IC9 are consistent with these results, implicating global 

cortical thinning and additional thinning at the lateral temporal lobe. Whereas IC0 showed 

strong relations with age across the entire age span included and IC5 across the early age 

span, IC9 was uniquely related to diagnosis suggesting that this distinct mode of gray matter 
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variation is specific to AD in a manner detectable by LICA. The spatial map of IC9 consisted 

of a symmetrical posterior greater than anterior gradient including more cortical thinning and 

reduced GMD in lateral temporo-parietal and precuneus bilaterally in AD. A similar AD-

specific spatial distribution involving bilateral parietal lobes has been observed (Du et al., 

2007), and resembles MRI-findings of autopsy-confirmed early onset AD patients suggesting 

that posterior greater than anterior atrophy was the most specific for ruling in a diagnosis of 

AD compared with both controls and other dementia etiologies (Likeman et al., 2005). The 

results suggest that whereas structures such as the hippocampus and frontal lobes are 

sensitive to a spectrum of insults including aging, parietal atrophy may have a more selective 

vulnerability for AD pathology. For instance, cerebral amyloid angiopathy––commonly seen 

in AD-patients––has a predilection for posterior vasculature (Serrano-Pozo et al., 2011). We 

also speculate that the IC9 pattern might probe specific sub-entities of AD pathology, for 

instance associated with posterior AD or posterior cortical atrophy syndromes (Crutch et al., 

2012). Further research on LICA and sub-group specificity within dementia syndromes is 

warranted.  

 The age association observed only within the AD group for IC5 and IC9 indicated 

that the older AD patients were more different than the control group compared to the 

younger AD patients in the MTL pattern (IC5), and vice versa, the younger AD patients were 

more different than the control group compared to the older AD patients in IC9 (Fig. 3B). 

This result is in line with previous findings documenting that early-onset AD had largest 

atrophy at the occipital and parietal lobes while late-onset AD were markedly atrophic at the 

hippocampus (Frisoni et al., 2007). These findings support differential mechanisms of early- 

versus late-onset AD, and future research should investigate if this pattern represents a 

marker of early-vs-late onset AD.  
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4.2 Discriminative patterns in AD classification 

We observed high performance for classification between AD and HCO (AUC=0.87, 

sensitivity = 0.82, specificity = 0.76 in the discovery sample, and AUC=0.93, sensitivity = 

0.84, specificity = 0.88 in the replication sample, Table 2), comparable to previous structural 

MRI studies. A comprehensive evaluation of different classifiers based on whole-brain 

structural MRI features (Cuingnet et al., 2011) reported a sensitivity ranging between 75% 

and over 81% and specificity of over 89%. Although our classification result did not 

outperform existing findings, we have demonstrated high clinical sensitivity of the derived 

LICA multivariate features at an individual level, meeting the required sensitivity of ideal 

biomarkers (>80%) (Weiner et al., 2013). The obtained accuracy when classifying between 

AD and MCI and SCI, respectively, was comparable with the accuracy obtained when 

classifying between AD and HCO. In line with the univariate analyses (Fig. S2), IC0,5,9 

were among the most important features in these classifications. Our results correspond with 

previous implications of MTL regions in AD classification (Cuingnet et al., 2011), but 

expand previous reports by demonstrating stronger contribution of IC0 and IC9, in addition 

to the medial temporal lobe patterns (IC5). 

Despite the generally observed graded pattern of AD<MCI<SCI across IC0,5,9, 

classification between MCI and SCI was at chance level, which is in line with the 

considerable group overlap on demographic and cognitive variables (Table 1). Whereas the 

profile of the present SCI group was comparable to other studies (Engvig et al., 2014; Garcia-

Ptacek et al., 2014), the MCI group was younger and higher performing in terms of global 

cognition compared with other studies (e.g., Alladi et al., 2006; Misra et al., 2009). Although 

the practice of clinical diagnostics is not easily confined to strict algorithmic definitions, such 

as employing specific cut-offs for MMSE, using biomarkers or more detailed 

neuropsychological profiling with stricter criteria for MCI and SCI could have improved the 
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classification due to less phenotypic overlap between the two groups. Additionally, the low 

performance of MCI versus HCO and SCI versus HCO indicates a brain phenotypic overlap 

among these three groups, a possible structural correlate of the relative high––or closer to 

normal––cognitive functioning in the two patient groups. 

Lastly, despite unbalanced group sizes in both discovery and replication samples, we 

obtained a fairly balanced performance between sensitivity and specificity. This demonstrates 

the usability of a resampling approach prior to training in a k-fold cross validation framework 

to alleviate the difference in sample size (Kuhn and Johnson, 2013; Lunardon et al., 2014), a 

commonly faced challenge in machine learning in neuroimaging research, in particular when 

utilizing clinical samples and recruitment in a clinical setting. 

 

4.3 Age prediction and relevant patterns 

The prediction model showed good performance on the entire age span (explained variance 

R2=0.77, [18;90] yrs), and moderate performance for narrowed spans (R2=0.62 for [45;90] 

yrs, and 0.42 for [18;45] yrs, Fig. S8). This prediction accuracy corresponds to the 

performance reported in other studies (Cole et al., 2015; Schnack et al., 2016), although our 

performance is slightly lower, which may be explained by the fact that the healthy groups in 

our sample cover a much wider age span compared to (Schnack et al., 2016) rendering the 

effective sample size per year smaller. The higher performance of late age prediction than 

early age prediction may be attributed to the wider age range in the late range compared to 

early range, and that the effects of age on the brain structure is heterogeneous and varies 

across the adult lifespan (Fjell et al., 2013b). IC0 (global thinning and GMD alterations) and 

IC1 (global surface area) were among the most informative features in most of the age 

predictors. This finding is consistent with previous studies which reported age-related global 

cortical thinning and surface area reduction across the adult lifespan (Fjell et al., 2009; 
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Lemaitre et al., 2012). Notably, IC5 and IC9, which showed strong and significant diagnosis 

effects (Fig. 1), showed very weak contribution in age prediction across all age ranges (IC9) 

or at the late age range (IC5), indicating disease-specific focal patterns of gray matter 

alterations.  

Except for IC0, the set of important features for age prediction was considerably 

different between early and late age prediction, suggesting that features involved in younger 

part of the adult lifespan are not informative for predicting age in the older, and vice versa. 

Indeed, IC14 (reflecting ventricular enlargement, which is particularly prevalent at old age 

(Pfefferbaum et al., 1994), Fig. S7), and IC27 (reflecting middle frontal surface area and 

GMD, Fig. S7) contributed to late but not early age prediction (Fig. 4). Conversely, IC3 

(reflecting global cortical thickness reduction with age at the young age range, Fig. S4, Fig. 

S7), IC5 (MTL, Fig. 2) and IC7 (superior cortical thickness, Fig. S7) contributed to early but 

not late age prediction (Fig. 4). These findings are consistent with earlier work reporting 

differential effects of age on cortical thickness within different age ranges, specifically 

cortical thickness differences appeared to be widespread at [8;30 yrs] and became more 

regional and less prominent at older ranges (Westlye et al., 2010). Taken together, by 

demonstrating largely non-overlapping feature sets involved in predicting early and late 

aging, our results are in line with the notion of heterogeneous and nonlinear aging of the 

human brain (Fjell and Walhovd, 2010), and the spatial patterns of the implicated 

components and age-curves of the associated subject weights may offer a novel window into 

distinct and statistically independent mechanisms of aging and neurodegeneration across the 

AD continuum. 

4.4 MMSE prediction and the relevant patterns 

Strongly driven by IC0,5,9 together with IC1, the MMSE classifier yielded predicted values 

that explained about a fifth of the total variance of the observed MMSE values in AD 
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patients. Our prediction accuracy within AD is in line with the results reported in 

(Stonnington et al., 2010), which largely implicated the medial temporal lobe (IC5) among 

the relevant regions. The contribution of IC0 and IC9 in this prediction also corresponds with 

previous studies reporting a positive association between cognitive performance (quantified 

by MMSE) and cortical thickness involving the frontal, temporal as well as parietal lobes in 

AD (Du et al., 2007; Lerch et al., 2005). In order to avoid issues of circularity related to the 

fact that MMSE of the AD group was considerably lower than MCI and SCI, we did not 

predict MMSE across AD, MCI and SCI. The low prediction accuracy within SCI may be 

explained by the low variance of MMSE scores within this group due to ceiling effects 

(Velayudhan et al., 2014). 

4.5 Differences and similarities between aging and AD-related patterns 

The feature importance and the performance profiles depicted in Fig. 4 and Fig. 5 showed 

that the effects of age is captured in a small number of distinct patterns, whereas the effect 

related to disease is distributed across several spatial components. Our data suggest that the 

modes of brain structural variation overlapping between aging and AD are globally 

distributed, whereas differential patterns are more localized, such as IC5 and IC9 (Fig. 2), 

and capture much subtler variance compared to the global patterns (Fig. S3). The 

considerable difference in performance profiles between the group and age classifiers (Fig. 5) 

provides supportive evidence of differential involvement in AD compared to age-related 

patterns, both for early and late aging.  

Our results did not support involvement of IC9 (anterior-posterior thickness and 

GMD gradient pattern) in the age classifiers across the lifespan, and for IC5 (MTL pattern) at 

the late age range. These features however were strongly implicated in AD classification, as 

evidenced from both multivariate classification using all LICA features and using either IC9 

or IC5. Taken together, these results indicate that the localized patterns implicating medial 
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temporal atrophy and thickness/GMD gradient along the anterior-posterior axis are more 

specific to disease mechanisms than aging.  

IC0 was important in both group classification and age prediction, suggesting that 

aging and dementia share the same global effects, i.e. global cortical thinning and alterations 

in GMD. In line with our findings suggesting differential involvement of brain characteristics 

in aging and AD, using pattern analysis techniques, atrophy patterns associated with 

advanced age have been shown to only partially overlap but and notably deviate from those 

typically found in AD (Habes et al., 2016). Also, our findings of MTL (IC5) involvement in 

dementia classification corroborates previous univariate studies showing that regional MTL 

volume and thickness, particularly the hippocampus and entorhinal cortex distinguish well 

between normal controls and AD (Dickerson et al., 2009; Fjell et al., 2010), with negligible 

contributions from MTL surface area (Dickerson et al., 2009). 

4.6 Replication analyses using ADNI 

Performing the same analyses independently on a replication sample, we found a set of three 

components (IC3rep, IC4rep, IC8rep) that strongly resembled IC0, IC5 and IC9 in the discovery 

sample (Fig. 2). Among these components, IC5 was nearly identical to IC4rep, suggesting that 

that this MTL pattern is highly robust across different cohorts. Both IC0 and its counterpart 

in the replication sample (IC3rep) showed a strong age association, although IC0 was much 

more strongly associated with age. This is likely explained by the much larger age variance in 

the discovery sample, which was captured in IC0. IC9, more strongly driven by thickness 

than GMD, also showed a high similarity with IC8rep. Both of these components reflected a 

gradient in thickness with stronger weighting posteriorly, particularly the occipital, medial 

parietal and lateral temporal regions, than anteriorly. This gradient however appeared to be 

visually more pronounced in IC9 than in IC8rep. Despite the large difference in age range 

between the two samples, the fact that IC4rep, IC8rep, found in a sample consisting of well age-
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matched groups, resembled IC5 and IC9 support our findings on the disease-specific 

characteristics of these patterns.  

4.7 Strengths and limitations of the study 

A strength of our study includes the inclusion of a wide spectrum of participants across both 

age (early – late) and disease severity (SCI, MCI, and AD) which enabled us to assess 

common and unique features across both the healthy adult human lifespan and the AD 

spectrum, as well as the interplay between AD-related and age-related patterns. Further, the 

use of LICA allowed us to simultaneously model global (e.g. IC0, global thickness and GMD 

alterations) and local (e.g. IC5, MTL atrophy, and IC9, anterior-posterior thickness gradient) 

independent effects across different complementary morphological measures. Since a main 

advantage of LICA is the ability to model shared variance across different measures, the 

derived components may show increased sensitivity to an effect of interest, especially in the 

case when the effect is subtle and present across different measures (Francx et al., 2016).   

Our study, however, has a number of limitations that should be taken into account 

when interpreting the results. Two different head coils were used during acquisition of the 

discovery sample, which may lead to unwanted source of MRI signal variation. However, the 

effects of head coil on the estimated morphometric features were accounted for by a few 

number of components (IC8,12,19, Fig. S6), which captured a tremendous amount of 

variance in head coil, leaving the rest of the components largely unaffected or affected to a 

modest extent. Although replication in independent samples is needed, this result 

demonstrates that LICA could be a promising multivariate tool for multi-site studies, where it 

is highly desirable to combine data from different scanners in the same unified analysis 

framework. Secondly, although the study was designed to assess gray matter differences 

only, inspection of the FSL-VBM GM-segmentation revealed some inclusion of underlying 

WM across the cortex likely due to age-related blurring of tissue borders and the probabilistic 
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threshold set for tissue separation. We have recently demonstrated the utility of LICA for 

diffusion MRI metrics in an overlapping dataset (Doan et al., 2017) and future studies should 

assess the benefits of combining features across imaging modalities (morphometry, diffusion 

MRI, functional MRI, etc.). 

In this study, we used a model order of 50 for LICA decomposition. Our classification 

and prediction results indicate stable performance across a range of model orders and 

hierarchical clustering results favor this choice of model order. However, there is generally 

no optimal model order and future studies should assess the use of different model orders.  

Another limitation is that the AD group in the discovery sample was not very well 

age-matched with the other elderly groups, making it difficult to completely rule out the 

effect of age in the group comparisons, although age was included as covariate in all 

univariate analyses. Since advanced age is the single most important risk factor for AD, the 

slightly higher age in the AD group compared to the MCI and SCI group is not surprising, in 

particular considering the clinical nature of the study. Whereas the results from the 

replication sample strongly support that the results from the discovery sample are not simply 

explained by age-differences between groups, follow-up studies are needed to assess the 

value of the identified brain patterns for predicting clinical conversion in the MCI and SCI 

patients, which has important clinical implications. Lastly, whereas the diagnostic workup 

was performed by two experienced physicians according to research criteria and following a 

comprehensive and standardized protocol (Braekhus et al., 2011), the clinical and biological 

phenotyping (e.g., amyloid and tau status, APOE4) in the current discovery samples was 

limited. Further studies are needed to test for associations with a wider range of clinical and 

cognitive phenotypes, including amyloid status, genetic risk, episodic memory etc. 

Conclusively, by means of data-driven analysis, we have reported distinct and 

statistically independent multivariate MRI-based brain patterns across a naturalistic memory 
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clinic patient sample with increasing degree of cognitive impairment showing high sensitivity 

to clinical status. In addition to global reductions in estimated cortical thickness and surface 

area, which were isolated in independent components capturing large data variance, the 

anatomical distribution of the other clinically sensitive components, capturing subtler 

variance, are in line with known pathophysiological properties of AD, reflecting co-occurring 

thickness and GMD reductions encompassing MTL regions including the hippocampus, 

lateral temporal, precuneus and posterior cingulate cortex, as well as a pattern of anterior-

posterior thickness and GMD gradient. In addition to its clinical sensitivity, a global 

thickness and GMD pattern also showed very high age prediction power, corroborating the 

extant evidence of reduced apparent cortical thickness throughout the adult lifespan. These 

patterns are consistent across independent samples. The current findings expand previous 

knowledge by suggesting that the characteristic pattern of cortical thickness and volumetric 

reductions in aging and across the AD spectrum are in fact reflecting the linear combination 

of several independent components that may represent distinct neurobiological and 

pathophysiological processes. Using multivariate machine learning techniques, we 

documented differential and specific brain characteristics involved in dementia compared to 

both early and late aging, and also between these different age spans. This result adds 

structural neuroimaging evidence to the notion that aging across the adult lifespan is 

heterogeneous and non-linear, and that AD reflects accelerated aging alongside disease-

specific effects, supporting the utilization of advanced structural MRI for early detection in a 

clinical dementia setting.  
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 HCY 
(n=324) 

HCO 
(n=31) 

SCI 
(n=38) 

MCI 
(n=78) 

AD 
(n=137) Group comparisons 

Age 31.1 ± 7.5 62.8 ± 10.3 63.9 ± 9 64.2 ± 11 71.4 ± 8.3 (HCY<HCO, MCI, SCI<AD)* 

Sex N (%) female 142 (44) 17 (55) 17 (45) 27 (35) 81 (59) (MCI < HCO, AD; HCY < AD) * 

No difference among AD, SCI 

and HCO. 

MMSE** n/a n/a 29.3 ± 0.9 28.2 ± 1.8    23 ± 4.8 (AD < MCI, SCI) * 

Head coil N (%) 

8HRBRAIN 

324 (100) 31 (100) 20 (53) 44 (56) 62 (45) (AD, MCI, SCI < HCO, HCY) * 

No difference among AD, MCI, 

SCI. 

** missing for 1 AD, 6 MCI and 2 SCI. 

Table 1. Sample characteristics. AD = Alzheimer’s disease. MCI: Mild Cognitive 

Impairment, SCI: Subjective Cognitive Impairment, HCY: Young Controls, HCO: Elderly 

Controls, MMSE: Mini Mental State Examination. *Linear regression was used to compare 

groups for continuous variables and Chi-square test was used for categorical variables, “>” 

and “<” denote significant group differences (P < .05, Bonferroni correction) in the indicated 

direction. 
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Sample Classification 
AUC 

(mean ± sd) 
Balanced Accuracy 

(mean ± sd) 
Accuracy 

(mean ± sd) 
Sensitivity 

(mean ± sd) 
Specificity 

(mean ± sd) 

Discovery 

AD versus MCI 0.80 ± 0.02 0.73 ± 0.03 0.73 ± 0.03 0.73 ± 0.04 0.74 ± 0.05 
AD versus SCI 0.85 ± 0.02 0.77 ± 0.03 0.78 ± 0.02 0.79 ± 0.03 0.76 ± 0.05 
AD versus HCO 0.87 ± 0.02 0.79 ± 0.03 0.81 ± 0.02 0.82 ± 0.03 0.76 ± 0.06 
MCI versus SCI 0.53 ± 0.04 0.49 ± 0.04 0.50 ± 0.04 0.52 ± 0.09 0.46 ± 0.09 
MCI versus HCO 0.56 ± 0.06 0.54 ± 0.05 0.56 ± 0.05 0.59 ± 0.09 0.50 ± 0.10 
SCI versus HCO 0.53 ± 0.04 0.50 ± 0.04 0.50 ± 0.04 0.52 ± 0.10 0.47 ± 0.12 

Replication 

AD versus MCI 0.71 ± 0.01 0.65 ± 0.02 0.66 ± 0.02 0.63 ± 0.04 0.68 ± 0.03 
MCI versus HC 0.70 ± 0.02 0.65 ± 0.02 0.66 ± 0.02 0.67 ± 0.03 0.63 ± 0.03 
AD versus HC 0.93 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.84 ± 0.03 0.88 ± 0.02 

 
Table 2: Classification performance. sd=standard deviation.  
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Figure captions 
 
Figure 1: Plot of f-statistics showing main effect of diagnosis and age. The dashed line 

represents significance threshold corrected for multiple comparisons across all components 

based on permutation testing. 

 

Figure 2: Spatial maps and subject loading distribution of the components showing strong 

diagnosis effect in the discovery (A, B) and replication samples (C, D).  The spatial maps 

represent the thresholded z-scores (3 < |z| < 10). In the spatial map, the weights (in 

percentage) indicate the relative contribution of each measure to the component at the group 

level. Spatial maps of measures showing negligible contribution are not presented. All 

presented components are multivariate, involving both thickness and GMD. In the subject 

loading box plots, the box represents the 25% and 75% quantiles, the horizontal bar in the 

box representing the median, the diamond the mean, and the dots the outliers. 

 

Figure 3: (A) Scatter plot of subject loadings as a function of age. Blue curves represent the 

LOESS fit on the combined set of HCY, HCO and SCI subjects. Red curves represent the 

LOESS fit using all datasets (HCY, HCO, SCI, MCI and AD). R2=explained variance. (B) 

and (C) Age scatter plot within elderly healthy controls, MCI and AD of IC0,5,9 in the 

discovery sample (B) and IC3,4,8 in the replication sample (C). The lines represent the linear 

fits with groups. rep=replication.  

 

Figure 4 : Feature importance quantified using the lasso’s standardized regression 

coefficients. The ranking was inferred based on the magnitude of the regression coefficients. 

Given that most of the features showed near zero coefficients, for visualisation purpose, we 

focused on the first five most important features. Feature ranking of classification (MCI 
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versus SCI, MCI versus HCO, SCI versus HCO) and prediction (MMSE within MCI, SCI) 

with low performance is not shown. The color codes for the actual feature importance 

rankings. r=importance ranking. 

 

Figure 5 : Performance profile of each classifier when incrementally excluding the first nth 

most important features (n=1,2,3,…,15), referring to feature importance ranking obtained 

from a reference classifier to decide on the set of excluded features. Area Under the ROC 

Curve (AUC) and R2 were computed for group classification and age prediction, respectively. 

The black dashed horizontal lines represent the performance obtained when using all LICA 

features. 

 













Supplemental Material 

Statistical analysis 

Correction for multiple testing of all GLM analyses across all LICA components was per-

formed using permutation testing. In each iteration, we permuted each of the following vari-

ables with respect to all the others: LICA subject loadings, age, sex, group and head coil pri-

or to performing GLM analyses. This process was repeated 10,000 times, resulting in the 

null distribution of the relevant statistics (Cohen’s d or f) based on which the corrected p-

value was computed. 

 We also assessed the significance of group classification and age, MMSE prediction 

based on permutation testing using the same procedure as described above. In each of the 

10,000 permutation iteration, we permuted the LICA components, group label (for classifi-

cation), and age, MMSE (for prediction), one with respect to all the others prior to perform-

ing classification or prediction to obtain the null distribution of the performance.  

Multivariate analyses 

We run the same group classification and age prediction pipeline as run on the LICA fea-

tures using either the FS-VBM or PCA feature sets as input features. LICA (AUC=0.87, 

0.85, 0.8 for AD vs. HCO, SCI and MCI) showed slightly higher and lower group classifica-

tion performance compared to the PCA (AUC=0.83, 0.83, 0.73 for AD vs. HCO, SCI and 

MCI)  and FS-VBM feature set (AUC=0.89, 0.90, 0.82 for AD vs. HCO, SCI and MCI), re-

spectively (Fig. S8A). In terms of age prediction, LICA (R2=0.42, 0.62, 0.77 for early, late 

and full age ranges) showed higher performance than both feature sets (PCA: R2=0.38, 0.37, 

0.71; FS-VBM: R2=0.42, 0.44, 0.71), especially at the late age range (Fig. S8B). Fig. S8C 

presents the t-statistics of the age effect obtained by running a linear regression model on 

each feature in each of the feature sets using all subjects in the HCY, HCO and SCI 



groups, accounting for sex. The LICA feature set showed increased sensitivity to age than 

the FS-VBM and PCA sets at the late or full age ranges, as suggested by the higher magni-

tude of the t-statistics. Taken together, these results suggest that LICA feature set, while be-

ing comparable to FS-VBM and PCA sets regarding group classification, it appeared to be 

more efficient in capturing age-related patterns, and thus better suited for the purpose of dis-

entangling age and disease-related patterns. 

LICA on thickness, area and GMD compared to ICA decompositions on each of these mea-
sures 

We performed ICA on each data type (thickness, surface area or GMD maps) using the same model 

order (50) and compared the results with the original LICA run on all measures. Whereas the spatial 

maps of IC0 was seen in the corresponding IC (IC0) of single measure (thickness, GMD) ICA de-

compositions (subject loadings’ correlation r=0.94, 0.92, respectively), IC5 LICA was presented in 

multiple components (maximum subject loadings’ correlation with single measure components 

r=0.72). IC9 LICA was also only partly visible in the single ICA components (maximum correlation 

with single measure components r=0.58). Importantly, when comparing the effect sizes obtained 

using each single measure ICA and the LICA components, the LICA components showed increased 

sensitivity to AD (Fig. S10A). In line with the univariate results, multivariate classification results 

showed that the LICA components yielded superior performance compared to the single measure 

ICA feature sets in AD vs. MCI, SCI and HCO (Fig. S10B), with the exception that the GMD ICA 

features showed slightly higher performance than LICA in AD vs. HCO (AUC = 0.89 vs. 0.87). 

These results provide empirical evidence supporting the benefits of combining these complemen-

tary measures using LICA.  



The effect of LICA model order on classification, prediction performance and model order 

selection 

We ran LICA using a range of different model orders (d=10, 20, …, 100) and performed group 

classification and age prediction to assess how the performance varies with respect to d. The results 

showed that the performance is fairly stable across model orders, with the exception of the [45;90 

yrs] age classifier (Fig. S11A). For this age classifier, the performance steadily increased from d=10 

and became relatively stable from d=50. This result indicates that at a model order of 50 or more, 

the LICA patterns showed in increased sensitivity to old age compared to smaller orders.  

 Additionally, in an unsupervised manner, for each model order d, we performed hierrachical 

clustering of the subjects using average linkage and Euclidean distance. Next we used the cophe-

netic correlation coefficient to evaluate the resulting dendrogram. A higher value of the cophenetic 

coefficient represents a clustering dendrogram that better fits the data. As seen in Fig. S11B, the 

cophenetic coefficient significantly increased from d=10 until d=50, then started to become rela-

tively stable (increasing with a reduced rate). This indicates that d=50 is an appropriate choice for 

LICA decomposition of these data.  

Supplementary Figure Legends

Figure S1: [Replication sample] Main effect of diagnosis, age and sex on the LICA subject load-

ings. The dashed line in each subplot represents the significance threshold, corrected for the number 

of LICA components, obtained using permutation testing.  

Figure S2: Effect size (Cohen’s d) of group pairwise comparisons in (A) discovery and (B) 

replication samples. *, ** indicate significance levels (* 0.001<p<0.05, ** p<0.001) after 

correcting for multiple comparison using permutation testing. 

Figure S3: [Discovery sample] Percentage explained variance of all LICA components.



Figure S4:  [Discovery sample] Scatter plot of subject loadings versus age for IC1,3,7,14. Only 

components where the LOESS fits across all datasets showed R2 ≥︎0.1 are shown. Blue curves repre-

sent the LOESS fit on the combined set of HCY, HCO and SCI subjects. Red curves represent the 

LOESS fit using all datasets. 

Figure S5: [Discovery sample] Main effect of head coil on the components’ subject load-

ings. The dashed line represent the permutation-based significance threshold corrected 

across all components. 

Figure S6: [Discovery sample] Spatial maps of the components capturing strong head coil 

effects (IC8,12,19). The spatial maps represent the thresholded z-scores (3 < |z| < 10). The 

weights indicate the relative contribution of each measure to the component at the group 

level. Spatial maps of measures showing negligible contribution (weight <5%) are not pre-

sented.  

Figure S7: [Discovery sample] Spatial maps of the components rather than IC0, IC5 and 

IC9 sensitive to AD and age. The spatial maps represent the thresholded z-scores (3 < |z| < 

10). The weights indicate the relative contribution of each measure to the component at the 

group level. Spatial maps of measures showing negligible contribution (weight <5%) are not 

presented. 

Figure S8: [Discovery sample] (A) Classification performance, (B) Age prediction perfor-

mance, (C) Histogram of the t-statistics of the age effect on either the LICA feature (n=47), 

FS-VBM feature (n=262) or PCA feature (n=136) sets. 

Figure S9: [Discovery sample] GLM fit within each group of subject loadings against Mini-Mental 

State Examination score (MMSE).  



Figure S10: [Discovery sample] (A) Histogram of the Cohen’s d and (B) Classification perfor-

mance using either LICA or different ICA feature sets.  

Figure S11: [Discovery sample] (A) Performance (area under ROC curve for classification and R2 

between predicted and true value for age prediction) plotted as a function of LICA model order, (B) 

Cophenetic correlation coefficient as a function of model order. 
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Figure S1: [Replication sample] Main effect of diagnosis, age and sex on the LICA subject load-

ings. The dashed line in each subplot represents the significance threshold, corrected for the number 

of LICA components, obtained using permutation testing.  
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Figure S2: Effect size (Cohen’s d) of group pairwise comparisons in (A) discovery and (B) 

replication samples. *, ** indicate significance levels (* 0.001<p<0.05, ** p<0.001) after 

correcting for multiple comparison using permutation testing. 
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Figure S3: [Discovery sample] Percentage explained variance of all LICA components. 

"  

Figure S4: [Discovery sample] Scatter plot of subject loadings versus age for IC1,3,7,14. Only 

components where the LOESS fits across all datasets showed R2 ≥︎0.1 are shown. Blue curves repre-

sent the LOESS fit on the combined set of HCY, HCO and SCI subjects. Red curves represent the 

LOESS fit using all datasets. 
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Figure S5: [Discovery sample] Main effect of head coil on the components’ subject load-

ings. The dashed line represent the permutation-based significance threshold corrected 

across all components. 



IC8 - GMD: 69% weight

"  

IC8 - Thickness: 26% weight

"   

IC12 - GMD: 89% weight

"  

IC19 - GMD: 95% weight

"  

Figure S6: [Discovery sample] Spatial maps of the components capturing strong head coil 

effects (IC8,12,19). The spatial maps represent the thresholded z-scores (3 < |z| < 10). The 

weights indicate the relative contribution of each measure to the component at the group 

level. Spatial maps of measures showing negligible contribution (weight <5%) are not pre-

sented.  
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Figure S7: [Discovery sample] Spatial maps of the components rather than IC0, IC5 and 

IC9 sensitive to AD and age. The spatial maps represent the thresholded z-scores (3 < |z| < 

10). The weights indicate the relative contribution of each measure to the component at the 

group level. Spatial maps of measures showing negligible contribution (weight <5%) are not 

presented. 
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Figure S8: [Discovery sample] (A) Classification performance, (B) Age prediction performance, 

(C) Histogram of the t-statistics of the age effect on either the LICA feature (n=47), FS-VBM fea-

ture (n=262) or PCA feature (n=136) sets. 
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Figure S9: [Discovery sample] GLM fit within each group of subject loadings against Mini-Mental 

State Examination score (MMSE).  
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Figure S10: [Discovery sample] (A) Histogram of the Cohen’s d and (B) Classification perfor-

mance using either LICA or different ICA feature sets.  
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Figure S11: [Discovery sample] (A) Performance (area under ROC curve for classification and R2 

between predicted and true value for age prediction) plotted as a function of LICA model order, (B) 

Cophenetic correlation coefficient as a function of model order. 


