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Abstract Environmental influences affecting genet-

ically susceptible individuals seem to contribute

significantly to the development of Parkinson’s dis-

ease (PD). Xenobiotic exposure including transitional

metal deposition into vulnerable CNS regions appears

to interact with PD genes. Such exposure together with

mitochondrial dysfunction evokes a destructive cas-

cade of biochemical events, including oxidative stress

and degeneration of the sensitive dopamine (DA)

production system in the basal ganglia. Recent

research indicates that the substantia nigra degenera-

tion can be decelerated by treatment with iron binding

compounds such as deferiprone. Interestingly

compounds known to decrease PD risk including

caffeine, niacin, nicotine and salbutamol also possess

iron binding properties. Adequate function of antiox-

idative mechanisms in the vulnerable brain cells can

be restored by acetylcysteine supplementation to

normalize intracellular glutathione activity. Other

preventive measures to reduce deterioration of

dopaminergic neurons may involve life-style changes

such as intake of natural antioxidants and physical

exercise. Further research is recommended to identify

therapeutic targets of the proposed interventions, in

particular protection of the DA biosynthesis by oxygen

radical scavengers and iron binding agents.
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Introduction

Parkinson’s disease (PD) affects at least 6 million

people worldwide (Kalia and Lang 2016) and typically

occurs in people over the age of 60, of whom about one

percent are affected (Global Burden of Disease Cancer

et al. 2017). Life expectancy is moderately reduced yet

PD mortality doubles some 15 years after the diagno-

sis. PD is a progressive disorder of the brain where

dopamine-producing cells located in the substantia

nigra (SN) degenerate. Dopamine (DA) synthesized in

SN is an important neurotransmitter depleted both in

PD and other movement disorders (Bernheimer et al.

1973). The precursor of DA known as L-dopa origi-

nates from the amino acid L-tyrosine through the

action of the enzyme tyrosine hydroxylase that uses

oxygen and iron (Fe) as cofactors (Fig. 1). Dopamine

is transported extracellularly by the DA active trans-

porter to synaptic receptors on neurons located in the

striatum, nucleus accumbens, hippocampus, neocor-

tex, and to the spinal cord. Dopamine deficiency in the

nigrostriatal pathway is the ultimate cause of the

parkinsonian syndrome, i.e. presence of bradykinesia

and at least one of rigidity or resting tremor (Postuma

et al. 2015).

Neurodegenerative changes in PD are associated

with progressive alpha-synuclein aggregation and

clinical symptoms developing slowly over time. It

has been shown that alpha-synuclein pathology with

Lewy bodies is present in gut myenteric plexus and

olfactory nerve decades before motor symptoms

develop. According to prevailing theory, the progres-

sive alpha-synuclein pathology occurs in a prion-like

manner and ultimately affects the entire nervous

system. Some neuronal populations appear to be more

vulnerable to the alpha-synuclein pathology than

other. This is the case of SN dopaminergic neurons,

which are prominently affected by neurodegeneration

in PD (Poewe et al. 2017). Neither the etiology of the

alpha-synuclein related neurodegeneration nor the

cause of the vulnerability of dopaminergic cells is

currently known. It is however clear that ageing, as

well as genetic and environmental factors are involved

(Kalia and Lang 2016). Specific mutations (Kalinderi

et al. 2016) in genes causing familial PD as well as

polymorphisms increasing the risk of PD have been

identified. Interestingly, mechanisms of these muta-

tions appear to converge on disrupted synaptic,

endosomal, and lysosomal trafficking ultimately lead-

ing to overwhelming of cellular disposal mechanisms

(Abeliovich and Gitler 2016).

Apparently the development of PD is characterized

by three different biochemical dysfunctions, viz.

abnormal protein aggregation, inhibition of mitochon-

drial complex 1, and oxidative stress (Dauer and

Przedborski 2003; Tanner et al. 1989). In normal

healthy states, aggregates of alpha-synuclein are

cleared by autophagy provided adequate activity of

leucine-rich repeat kinase 2 (LRRK2) is present

(Volpicelli-Daley et al. 2016). Mutations in the

LRRK2 gene have been noted in sporadic and in

familial PD (Berg et al. 2005). Mutations in other

genes, i.e. the SNCA gene (the alpha-synuclein gene),

also represent risk factors for PD (Kalinderi et al.

2016).

However, genetic background is considered to

account for only about 10% of PD cases, suggesting

that other factors play a crucial role in the pathogen-

esis. History of recent cranial trauma (Fang et al.

2012a) and CNS infections (Fang et al. 2012b) as well

as environmental factors such as exposure to fungi-

cides and pesticides, e.g., maneb, rotenone and

paraquat (Costello et al. 2009; Tanner et al. 2011)

seem to be involved in the pathogenic process. There

is ongoing discussion whether chronic low-level

exposure to various metals such as manganese may

Fig. 1 The enzyme tyrosine hydroxylase uses three cofactors,

viz. Fe(II), molecular oxygen and tetrahydrobiopterin (BH4) in

the biosynthesis of L-dopa. One of the oxygen atoms in O2 is

used to hydroxylate the tyrosine molecule in meta-position to L-

dopa, and the other is used to hydroxylate the cofactor BH4. The

oxidation state of the iron atom is crucial. If the Fe(II) is

oxidized to Fe(III), or replaced by another metal, the enzyme is

inactivated. Inappropriate interactions between Fe, or other

transition metals, with the enzyme or its reactants generate toxic

amounts of reactive oxygen species
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also be a risk factor for PD (Lucchini et al. 2009).

Furthermore, extensive epidemiological research has

identified several factors, such as tobacco smoking,

drinking tea or coffee, use of NSAID, statins, salbu-

tamol, and physical activity (Yang et al. 2015) to pose

a reduced risk to develop PD (Ascherio and Sch-

warzschild 2016; Barranco Quintana et al. 2009;

Noyce et al. 2012). It is an interesting question

whether these factors may prevent aggregation of

alpha-synuclein itself or protect vulnerable cellular

populations from its toxic effects. Indeed, recent

research indicates that there is no correlation between

Lewy body load and dopaminergic neuronal loss in

incidental Lewy body disease and PD cases (Iacono

et al. 2015) suggesting that alpha-synuclein pathology

does not irrevocably lead to neuronal death.

At present there is no effective cure for PD, and the

current treatment is merely symptomatic based on

substitution of dopaminergic deficit. Disease-modify-

ing approaches are urgently needed and understanding

the effects of protective factors identified by epidemi-

ological studies may bring us closer to this goal.

The present review identifies common mechanism

of some preventive measures in PD and highlights

their potential role in ameliorating metal-related

pathology. We also discuss links between metal

exposure, Fe metabolism and DA metabolism.

Dysregulated iron and copper metabolism

and oxidative stress in Parkinson’s disease

The accumulation of Fe observed in SN in association

with the occurrence of aggregated misfolded protein

seems to contribute to the progression of PD (Ward

et al. 2014). One theory claims that pathological

distributions of Fe and copper (Cu) (Dusek et al. 2015;

Genoud et al. 2017; Ward et al. 2014) aggravate

oxidative damage and contribute to PD progression.

Elevated cytosolic Fe in SN of PD patients has long

been associated with neurotoxicity via various mech-

anisms including deleterious interactions between DA

and Fe (Hare and Double 2016). Furthermore, dys-

metabolism of Cu with reduced cytosolic fraction of

the metal, reflecting reduced activity of the cuproen-

zyme superoxide dismutase-1 (SOD1) (Genoud et al.

2017) will also increase the oxidative stress in PD

(Trist et al. 2018). The pathogenic role of the

aggregation of alpha-synuclein, effective as a Cu

chaperone, for the SOD1 insufficiency is unclear

(Barnham and Bush 2008). The alterations in Fe and

Cu distribution appear to occur early in the PD disease

process and are therefore not considered to represent

merely a reactive redistribution of metals secondary to

neuroinflammation (Genoud et al. 2017).

The neurotransmitter precursor L-dopa is synthe-

sized from the amino acid tyrosine by the enzyme

complex tyrosine hydroxylase that uses molecular

oxygen and Fe(II) as cofactors (Fig. 1). This enzyme

complex represents a sensitive biochemical site in the

SN. Transition metal ions, including free ions of Fe,

manganese, and Cu, can catalyze the generation of

ROS around this site, and thereby affect the enzymatic

function of tyrosine hydroxylase negatively. Malfunc-

tion of tyrosine hydroxylase may further speed up

ROS generation, forming a vicious circle of enzymatic

dysfunction and ROS generation accelerating nigros-

triatal cell death. However, the exact mechanisms of

cellular death in PD, starting in the SN pars compacta

and subsequently spreading to other CNS regions, are

yet not fully known (Kalia and Lang 2016). Environ-

mental pollutants contributing in the PD pathogenesis

include 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) (Langston and Ballard 1984), paraquat,

rotenone, and maneb (Liou et al. 1997; Pezzoli and

Cereda 2013; Qi et al. 2014). The toxic effects of

rotenone and MPTP are ascribed to their impact on the

mitochondrial electron transport chain, as they cause a

transport block of electrons in complex 1, leading to

generation of ROS (Gao et al. 2003; Smeyne and

Jackson-Lewis 2005). Paraquat is another catalyst for

the formation of ROS (Bus and Gibson 1984). In rats

paraquat toxicity has been associated with Parkinson-

like neurodegenerations (Ossowska et al. 2006). One

study reported a link between combined exposure to

paraquat and Fe in infancy and mid-life Parkinson’s in

laboratory mice (Peng et al. 2007). Exposure to

maneb, a manganese dithiocarbamate derivative, is

associated with increased deposition of transition

elements in cerebral regions (Aaseth et al. 1981),

thereby apparently causing dopaminergic neurode-

generation (Zhang et al. 2003).

Reduced PD progression by deferiprone and other

iron chelators

A characteristic feature of the PD neuropathology is

the accumulation of Fe in the degenerating SN (Ward

et al. 2014). Although neurodegenerative changes are
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widespread in the PD nervous system, increased Fe

concentrations is apparently limited to SN (Acosta-

Cabronero et al. 2017; Double et al. 2010) where the

most pronounced neuronal loss is reported (Barbosa

et al. 2015). Interactions between electrophilic Fe(III)

ions and an extra-vesicular fraction of DA are assumed

to play a critical role in the progressive cellular

degeneration, initially creating an unstable Fe(III)–

DA-complex, that gives rise to neurotoxic products

especially in SN and related sensitive regions of the

brain (Hare and Double 2016). The unstable Fe(III)–

DA complex appears to bring about the production of

o-quinones (Zhang et al. 2012) and DA-quinones (DA-

quinones), as well as 6-hydroxydopamine (6-OHDA).

The former compounds are basis of the pigment

neuromelanin while the latter agent is a well-known

neurotoxin frequently used in animal PD models.

Inside the cell, unbound DA-quinones react with the

sulfhydryl groups of glutathione (GSH) and protein

thiols to form altered protein structures (Stokes et al.

1999) that cause cellular toxicity and microglial

activation (Asanuma et al. 2003). It has been sug-

gested that formation of 6-OHDA initiates a cascade

of reactions that increases the intracellular labile Fe

pool, thus overwhelming protective antioxidant mech-

anisms (Hare and Double 2016). Other catecholami-

nes also form unstable complexes and toxic products

with Cu(II) or Fe(III) (Aaseth et al. 1998). Interest-

ingly, a more stable chelate is formed between Fe(III)

and the ephedrine derivative, salbutamol (Fatima

2012), a commonly used anti-asthmatic drug.

Intriguingly, use of the latter drug was associated

with significantly decreased risk of developing PD in a

large epidemiological trial. Additional analyses have

shown that the protective effect is likely based on its

documented role as a regulator of the alpha-synuclein

gene decreasing its expression (Mittal et al. 2017). A

large-scale study is about to be launched studying

salbutamol as a disease-modifying agent for PD

(Robinson 2017). It would be interesting to see to

what extent the chelating properties of salbutamol

contribute to its putative neuroprotective effect.

Another metal-binding drug, deferiprone, is a

hydroxy ketone pyridine derivative (Fig. 2) effective

as an Fe chelating agent in clinical settings and known

to cross the blood–brain barrier (Roy et al. 2010).

Devos et al. (2014) studied the effect of conservative

Fe chelation with 30 mg/kg/day of deferiprone in PD

patients. This double-blind placebo-controlled pilot

trial showed that 12 months of deferiprone therapy

decreased disease progression by three points on the

Unified Parkinson’s Disease Rating Scale part III

(UPDRS-III) compared to the placebo group. Addi-

tionally, quantitative R2* transverse relaxometry MRI

technique, a surrogate marker of tissue Fe concentra-

tions, confirmed that deferiprone led to a drop in SN Fe

content (Devos et al. 2014). Another placebo-con-

trolled deferiprone trial in PD patients showed only a

trend for UPDRS-III improvement in the group using

the dose 30 mg/kg/day, but the R2* MRI indicated a

decrease of Fe in the dentate and caudate nuclei in the

active group compared to placebo (Martin-Bastida

et al. 2017). Statistical significance was not reached,

maybe related to the short duration (6 months) of this

trial.

These results support the hypothesis that conserva-

tive Fe chelation may modify natural progression of

Fig. 2 Chemical structures of proposed protective agents

deferiprone, caffeine, niacin and nicotine, showing their

nitrogen and oxygen electron donor groups, responsible for

the affinity to electrophilic ions of transition metals, e.g. Fe(III)

and Cu(II)
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PD. It is possible that Fe chelation may be even more

effective when initiated in prodromal stages of PD.

Caffeine: maybe another iron chelator

Postuma et al. (2012) found that patients with PD

improved by taking caffeine pills for 2 months. For the

study, 61 PD patients with a mean age of 60 years

were selected. In six weeks, 30 of the participants

received caffeine pills in an amount equivalent to two

cups of coffee a day and the remaining 31 subjects got

placebo capsules. At the end of the study, the patients

who had ingested caffeine reported, in addition to less

drowsiness, a general improvement in motor symp-

toms such as muscle stiffness and movement difficul-

ties (Postuma et al. 2012). A larger multicenter follow

up study was however unable to reproduce these

findings (Postuma et al. 2017).

Ross et al. (2000) upon analyzing data collected

during 30 years of follow-up of 8004 Japanese-

American men aged 45–68 enrolled in the study

during the period 1965–1968, identified 102 men with

PD, and noted that high coffee or caffeine intake was

linked to a significantly lower frequency of PD. This

effect appeared to be independent of smoking. Their

data indicated that the mechanism was related to the

caffeine dose and not to other nutrients (Ross et al.

2000). Animal studies (Xu et al. 2016) and meta-

analysis (Costa et al. 2010) have confirmed these

observations. Another meta-analysis has shown an

inverse linear dose–response relationship between PD

risk and amount of coffee, tea or caffeine consumed. It

was found that maximum protection was reached at

about three cups of coffee per day (Qi and Li 2014). In

this context the structural similarities between defer-

iprone and caffeine should be noted (Fig. 2). Protec-

tive effects of caffeine may be related to its ability to

bind Fe via its nitrogen and oxygen groups, albeit with

a lower binding constant than the EDTA-Fe com-

plexes (Andjelković et al. 2006).

Niacin is a protector with metal binding properties

Vitamin B3, or niacin, also known as nicotinic acid,

may alleviate certain types of early-onset PD symp-

toms (Anderson et al. 2008). Niacin has been shown to

attenuate neuroinflammation through an action on

niacin receptor 1 (NIACR1), also known as GPR109A

and may have a therapeutic potential toward PD

(Wakade and Chong 2014). Although moderate

amounts of niacin are found in a number of foods,

including chicken, turkey, beef, peanut and mush-

rooms, the vitamin can be supplemented in therapeutic

doses as tablets. In MPTP exposed rodents, the

administration of nicotinamide gave a dose-dependent

saving of striatal DA levels and SN neurons (Anderson

et al. 2008). Niacin, which is a precursor for nicoti-

namide adenine dinucleotide (NAD–NADH) needed

for DA production, may serve several purposes, i.e.,

reduce inflammation through NIARC1-related mech-

anisms, increase DA synthesis in the striatum through

NADPH supply and increase NAD/NADH ratio to

restore complex 1 functions in mitochondria. Niacin

can also bind transition metal ions including Fe into

stable complexes (Al-Saif and Refat 2012).

Nicotine and its neuroprotective mechanisms

Nicotine may have a potential to protect against PD,

and pharmaceuticals that target nicotine receptors

have been searched for. In particular, the nicotinic

alpha-7 receptor, implicated in long-term memory

function, has been in the focus of interest (Rang et al.

2003).

Nicotine acts as an agonist to most nicotinic

acetylcholine receptors (Malenka et al. 2009), and

can be used to improve cognition and alertness

(Jasinska et al. 2014). A meta-analysis of 41

placebo-controlled studies concluded that nicotine

had a positive effect on motor abilities, orienting

attention, and working memory (Heishman et al.

2010).

Using rat embryo tissue, Toulorge et al. (2011)

prepared brain cell cultures demonstrating conditions

that favored progressive loss of dopaminergic neu-

rons, which also showed distinctive features otherwise

characterizing PD, and this group also reported a

protective effect of nicotine. In normal mice, nicotine

has been found potentially able to rescue dopaminer-

gic neurons, but apparently not in mice without the

nicotine receptor (Toulorge et al. 2011).

Although one of the developed nicotine receptor

agonists, varenicline, showed only limited protective

effect (Bohnen et al. 2009), further research on

nicotine receptors and nicotine agonists in PD brings

possibilities for early stage neuroprotective treatment

(Barreto et al. 2014; Kelton et al. 2000; Quik 2004).

Interestingly, nicotine also acts as a metal-chelating

123

Biometals (2018) 31:737–747 741



agent, with high affinity for Fe(III) (Fazary 2017).

Thus, it is tempting here to forward the hypothesis that

the PD protecting potential of nicotine is not merely

related to its effects on the receptors, but also to its

ability to pass the blood–brain barrier better than other

chelators and thus act as an intra-neuronal Fe chelating

agent (Zhang et al. 2006).

Glutathione and glutathione peroxidase protect

against neurodegeneration

Another approach to ameliorate cellular deterioration

caused by ROS in PD is to raise the intracellular levels

of the tripeptide glutathione (GSH). Antioxidant

defenses in SN are relatively low, compared to other

regions of CNS, due to low levels of GSH, particularly

during the early stages of PD when extravesicular DA

and its degradation products may act as a GSH

depleting agents (Pearce et al. 1997; Stokes et al.

1999). N-acetylcysteine (NAC) shows antioxidant

properties by restoring cellular GSH, which partici-

pate in important endogenous antioxidant systems. In

experimental studies NAC has been reported to protect

against PD development (Rahimmi et al. 2015).

Glutathione acts either alone or together with an

appropriate enzyme system, viz. glutathione peroxi-

dases (GPXs), to reduce ROS. Also, GSH detoxifies

xenobiotics and maintains sulfhydryl proteins in a

reduced state (Meister and Anderson 1983). The

antioxidant characteristics of GSH have been demon-

strated in several models of oxidative stress, including

models using buthionine-sulfoximine (BSO) to deplete

GSH (Wullner et al. 1996). In these studies, the GSH

depletion increased oxidative stress in whole cells as

well as in mitochondrial fractions. Depletion of GSH

with BSO potentiated the MPTP-induced tyrosine

hydroxylase-positive neuron death in pars compacta of

SN (Wullner et al. 1996). Furthermore, NAC treatment

after MPTP or rotenone exposure in the GSH-depleted

models, restored mitochondrial complex 1 and pro-

tected against DA loss in SN (Chinta et al. 2006).

It is tempting to suggest that supplementation with

NAC in adequate doses to patients with PD may

inhibit disease progression.

In vivo, GSH exerts most of its anti-oxidative

functions as a cofactor to the GPX family of enzymes.

GPXs are a group of selenium-containing enzymes

capable of reducing toxic peroxides (Rotruck et al.

1973); GPX1 is present in both neurons and glial cells

(Power and Blumbergs 2009). Overexpression of GPX

decreases the amount of neuron loss in neurotoxic

conditions (Wang et al. 2003). An immunocytochem-

ical study of GPX1 expression showed that dopamin-

ergic neurons in the SN expressed low levels of this

protein, while other regions not affected in PD,

expressed higher levels (Trepanier et al. 1996). In an

experimental model of GPX1-deficient PD-mice chal-

lenged with MPTP, DA levels in vulnerable regions

decreased (Klivenyi et al. 2000). However, in cortical

samples taken from PD patients, GPX3 and GPX4

proteins were elevated compared to control subjects

(Blackinton et al. 2009), presumably reflecting a

protective response.

A marginal or deficient selenium status as is

reported from Scandinavian regions (Alehagen et al.

2016; Ellingsen et al. 2009) and other parts of Europe

involve a deficient GPX-dependent protection (Ale-

hagen et al. 2017), also with regard to nigrostriatal

functions. To the knowledge of the authors, clinical

studies with selenium supplementation in early stages

of PD in these regions have yet not been carried out.

Non-steroidal anti-inflammatory drugs

Neuroinflammation contributes to degeneration of the

dopaminergic nigrostriatal pathway in PD

(Vivekanantham et al. 2015) through mechanisms of

microglial activation. Pro-inflammatory phenotype of

microglia is promoted by extracellular alpha-synu-

clein aggregates and neuromelanin complexes

released from dying neurons (McGeer et al. 1988).

Neuromelanin contains high concentration of various

metals, namely Fe, Cu and Mn that may themselves

contribute to inflammation (Tansey and Goldberg

2010). Neuroinflammation in PD is rather widespread

as increased inflammatory markers, such as TNFa,
IFNc, IL-6, IL-1b, and other cytokines are consis-

tently detected in serum and cerebrospinal fluid of PD

patients (Brodacki et al. 2008). Neuroinflammation is

also an early event in neuronal degeneration since

microglial activation has been documented by PET in

patients with isolated REM sleep behavioral disorder,

considered a prodromal synucleinopathy (Stokholm

et al. 2017). Given that several genes causing PD,

namely LRRK2, GBA, and SNCA, are expressed

predominantly in immune cells and/or are involved

in regulating inflammatory response, the emerging

hypothesis is that inflammatory dysregulation is a
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primary trigger of neurodegeneration (Dzamko et al.

2015). However, it is not clear to what extent is the

activation of immune cells is deleterious with respect

to disease progression. On one side, microglial

phagocytosis may clear abnormal protein aggregates,

on the other side, neurotoxic effects of chronic

inflammatory reaction may accelerate neuronal loss

(Deleidi and Gasser 2013).

According to epidemiological data, non-steroidal

anti-inflammatory drugs (NSAIDs) can reduce the risk

of developing PD (Asanuma et al. 2004; Chen et al.

2003; Wahner et al. 2007). These results are appar-

ently in line with immunocytotoxic theories of neu-

rodegeneration, and a neuroprotective effect of

NSAID was initially ascribed to cyclooxygenase

type-2 inhibition (Teismann et al. 2003). However,

other studies did not confirm reduced PD risk in the

NSAID users compared to controls (Becker et al.

2011; Etminan and Suissa 2006). Later studies

detailed the effect of NSAID, and Wahner et al.

(2007) reported that reduced risk of getting PD in

NSAID users was seen only among regular users and

the effect was particularly strong (OR 0.44) in people

who regularly used non-aspirin NSAIDs (Wahner

et al. 2007). A meta-analysis by Gagne and Power

(2010) revealed only a moderately reduced risk of

about 15% in non-aspirin NSAID users while no

protective effect was observed in aspirin users (Gagne

and Power 2010). More specifically, only regular use

of ibuprofen was associated with significant reduction

of PD risk (pooled OR 0.73) in a study and meta-

analysis of several NSAIDs (Gao et al. 2003). Taken

together, the fact that ibuprofen use, but not use of

other NSAIDs, was associated with lower PD risk

suggests mechanisms other than a generic anti-

inflammatory activity. It is possible that only some

few NSAIDs act protective, owing to their ability to

form Cu, manganese or Fe chelates (Duncan and

White 2012). Interestingly, it was suggested that

ibuprofen possesses Fe chelating (Kennedy et al.

1990) or hydroxyl scavenging (Hamburger and

McCay 1990) properties. Of interest is also that some

Cu-chelates of NSAIDs appear to show SOD-mimetic

activity (Roberts and Robinson 1985).

Exercise

Parkinson’s disease can be delayed, or its conse-

quences attenuated through regular safe physical

activity. Recent scientific studies suggest a combina-

tion of aerobic activities, strength training from

moderate to high intensity, as well as balance training,

gait training, functional activities and exercises that

require agility (Fisher et al. 2008; Goodwin et al.

2008). Experimental studies indicate that the inflam-

matory response is reduced, insulin sensitivity

improved and damage to dopaminergic neurons

reduced when exercise is combined with intermittent

fasting (Mattson 2014).

Physiotherapeutic treatment should be started as

soon as the diagnosis is confirmed and is a good way to

help stimulate movement and quality of life as it

improves the strength, coordination, and amplitude of

the movements, i.e., by reducing the otherwise inex-

orable imbalance characterizing the progressive dis-

ease, thereby preventing contractures and falls

(Ahlskog 2011).

Conclusion

Environmental factors including exposure to metals,

pesticides and drugs account for the majority of cases

of Parkinson�s disease. Excessive oxidative stress

accentuated by iron accumulation and abnormal

protein aggregation in the nigrostriatal region of the

brain are primary events in the development of the

disease that need to be addressed by preventive

measures. Iron is a necessary cofactor for the enzyme

tyrosine hydroxylase responsible for DA synthesis,

and accumulation of Fe in the SN deteriorates the

function of tyrosine hydroxylase. Metal binding

substances e.g. Deferiprone mobilize Fe from the SN

possibly providing prevention. Caffeine, niacin, nico-

tine and salbutamol also seem to protect against

progression by similar mechanisms. Supplementation

with NAC together with selenium for optimal glu-

tathione synthesis is recommended to reduce oxidative

damage to sensitive SN cells.
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