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A B S T R A C T

Alzheimer's disease (AD) is a debilitating age-related neurodegenerative disorder. Accurate identification of in-
dividuals at risk is complicated as AD shares cognitive and brain features with aging. We applied linked inde-
pendent component analysis (LICA) on three complementary measures of gray matter structure: cortical thickness,
area and gray matter density of 137 AD, 78 mild (MCI) and 38 subjective cognitive impairment patients, and 355
healthy adults aged 18–78 years to identify dissociable multivariate morphological patterns sensitive to age and
diagnosis. Using the lasso classifier, we performed group classification and prediction of cognition and age at
different age ranges to assess the sensitivity and diagnostic accuracy of the LICA patterns in relation to AD, as well
as early and late healthy aging. Three components showed high sensitivity to the diagnosis and cognitive status of
AD, with different relationships with age: one reflected an anterior-posterior gradient in thickness and gray matter
density and was uniquely related to diagnosis, whereas the other two, reflecting widespread cortical thickness and
medial temporal lobe volume, respectively, also correlated significantly with age. Repeating the LICA decom-
position and between-subject analysis on ADNI data, including 186 AD, 395 MCI and 220 age-matched healthy
controls, revealed largely consistent brain patterns and clinical associations across samples. Classification results
showed that multivariate LICA-derived brain characteristics could be used to predict AD and age with high ac-
curacy (area under ROC curve up to 0.93 for classification of AD from controls). Comparison between classifiers
based on feature ranking and feature selection suggests both common and unique feature sets implicated in AD
and aging, and provides evidence of distinct age-related differences in early compared to late aging.
the receiver-operator characteristics Curve; FWHM, Full-width at Half Maximum; GLM, General Linear Model; HCO/HC, Healthy
CA, Independent Component Analysis; LICA, Linked Independent Component Analysis; MCI, Mild Cognitive Impairment; MMSE,
e Imaging; MTL, Medial Temporal Lobe; SCI, Subjective Cognitive Impairment; GMD, Gray Matter Density; VBM, Voxel-based
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1. Introduction

Sporadic Alzheimer's disease (AD) is a multifactorial neurodegener-
ative disorder strongly associated with increased age (Herrup, 2010),
with more than 90% of all AD cases diagnosed after age 65 (Herrup,
2015). Normal aging and AD share cognitive and neuroanatomical
characteristics in early stages (Fjell et al., 2013a, 2014). Thus, discrimi-
nating between the two phenomena––as well as better deciphering their
commonalities––is essential for disease-specific intervention and for
stratifying groups in clinical trials.

Magnetic resonance imaging (MRI) may be used to study age-related
and disease-specific patterns in the gray matter. Traditionally, atrophy of
limbic structures, and particularly of the medial temporal lobe have been
among the MRI features that distinguish best between patients with AD
and healthy older adults (Fjell et al., 2010; Wang et al., 2015). Still, even
for the established medial temporal lobe atrophy biomarker, accuracy is
not ideal for individual AD diagnostics (Lowe et al., 2013), particularly in
older age groups. Diagnostic accuracy of medial temporal lobe atrophy
varies with the age of the patient, and may be complicated by differential
effects of early and late brain aging processes (Fjell and Walhovd, 2010;
Westlye et al., 2010).

The neurobiological mechanisms of MRI-based cortical gray matter
loss in both aging and across the dementia spectrum, including AD, are
multifactorial––with e.g., functional, amyloidal, neurodegenerative and
metabolic processes affecting brain structure differentially in different
brain regions (Buckner et al., 2005). Since different biological processes
that are distinguishable at the microscopic level may give rise to highly
overlapping brain imaging features on the macroscopic level (e.g.,
cortical thickness), univariate methods, which only consider the
observed level (e.g., cortical thickness in one region of interest or the
volume of a subcortical structure) and not the correlation structure across
several MRI features (e.g., the association between cortical thickness in
one region and hippocampal volume), may not be sensitive enough to
properly differentiate aging and AD-specific processes. Instead, coordi-
nated brain patterns caused by distinct underlying biological processes
likely require multivariate approaches to disentangle (Doan et al., 2017a;
2017b; Douaud et al., 2014; Francx et al., 2016; Groves et al., 2011).

Linked independent component analysis (LICA) is a promising
multivariate technique for modeling co-variance across different brain
indices or modalities (Groves et al., 2011). Unlike alternative supervised
approaches such as partial least squares (Chen et al., 2009; Sui et al.,
2012), which rely on the diagnosis label, LICA is fully data-driven and
makes use of no demographic or diagnosis information. This technique
was based on the conventional ICA technique, which assumes the signal
to be a linear mixture of statistically independent spatial patterns that are
non-Gaussian. During the optimization process, ICA searches for maxi-
mally non-Gaussian patterns by iteratively updating the subject loadings,
or mixing parameters. LICA allows simultaneous ICA decompositions on
different measures but constrains the subject loadings to be the same
across measures (Groves et al., 2012). Given that each LICA component
describes a spatial pattern of variation over and above variation associ-
ated with all other components, a particular attractive feature of LICA is
that it allows identification of structured variance explaining only a small
portion of the total variability, and which is therefore easily left un-
identified when using conventional mass-univariate approaches (Doan
et al., 2017a; Francx et al., 2016).

Machine learning, or multivariate pattern analysis, offers a powerful
option for building image-based predictive models useful for computer-
aided diagnosis (Sabuncu et al., 2015; Westman et al., 2011, 2013). In
AD, machine learning has been used for diagnostic classification and
clinical score prediction at an individual level (Cuingnet et al., 2011;
Stonnington et al., 2010), outperforming radiological evaluation
(Kl€oppel et al., 2012). A machine learning classifier, which can identify
multivariate combinations of features that lead to maximal group clas-
sification or clinical score prediction accuracy, can be used to assess the
clinical sensitivity of novel MRI features as a whole. Furthermore, the
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relative contribution, or ranking, of a feature used to build such a clas-
sifier with respect to all other features can also be evaluated to reveal
further insights on the brain characteristics involved, and to compare the
patterns involved in AD and healthy aging. The lasso (least absolute
shrinkage and selection operator) algorithm, which has previously been
successfully applied in clinical studies (Cai et al., 2014; Uddin et al.,
2013; Wager et al., 2011), is efficient in identifying important features
and yields shrinkage estimate of regression coefficients that potentially
lower predictive errors compared to ordinary least squares (James
et al., 2013).

With a primary interest in morphological feature extraction, we
proposed to combine a multivariate data fusion approach with machine
learning algorithms in an attempt to isolate and characterize MRI based
brain morphometric features of the AD spectrum sharing commonalities
with advancing age as well as disease-specific patterns. Rather than
building a classification model of AD with maximal accuracy, we used
machine learning as a means to further evaluate the extracted patterns
for their differential sensitivity to disease and aging. Specifically, we
performed LICA on three sensitive and complementary MRI-derived gray
matter morphological measures (modulated gray matter density maps
(GMD) obtained using voxel-based morphometry (VBM), cortical surface
area and thickness) in a combined sample comprising 355 healthy sub-
jects covering large portions of the adult human lifespan (18–78 yrs) and
253 memory clinic patients with increasing degree of cognitive impair-
ment (subjective cognitive impairment (SCI), mild cognitive impairment
(MCI)) and AD dementia. In order to assess the generalizability of the
multivariate patterns and their diagnostic sensitivity across cohorts, we
attempted to replicate our findings in an independent dataset of well age-
matched groups, comprising 186 patients with AD, 395 patients with
MCI and 220 healthy controls (HC) from the Alzheimer's Disease Neu-
roimaging Initiative (ADNI). We included both cortical surface area and
thickness in the model as they are genetically independent (Panizzon
et al., 2009; Winkler et al., 2010) and provide complementary informa-
tion on cortical morphology (Hogstrom et al., 2013; Hutton et al., 2009).
GMD maps provide an indirect measure of gray matter volume enabling
assessment of subcortical structures, such as the hippocampus. Further-
more, surface area and thickness contributes to only a proportion of the
variance in GMD, as shown in schizophrenia studies (Palaniyappan and
Liddle, 2012). Thus jointly analyzing the three measures would likely
increase the sensitivity to clinical variance, and also provide more
nuanced information on regional brain patterns.

In line with recent studies using LICA, we expected one or more
widespread components capturing global cortical features with strong
relationships with age (Douaud et al., 2014; Groves et al., 2012). By
including an adult lifespan sample as well as a broad range of patients
with AD and its clinical precursors, we investigated the assumption that
AD is both associated with aging-related, as well as disease-specific brain
patterns. We hypothesized that LICA would allow for identification of
both common and differential features of AD and aging. Further, we
hypothesized that feature sets informative for AD classification would be
more similar to the feature sets involved in late compared to early aging.
To test the clinical sensitivity of the LICA multivariate patterns at an
individual level, and to assess their relative involvement in AD and
healthy aging, we used machine learning to perform pairwise clinical
group classification, and prediction of cognition and age at different age
ranges. Finally, we compared the feature importance in the resulting
clinical group, cognition and age classifiers to assess the brain morpho-
logical overlap between these different phenotypes.

2. Materials and methods

2.1. Participant recruitment and screening

For our discovery sample, cross-sectional patient data were obtained
from the “Norwegian registry for persons being evaluated for cognitive
symptoms in specialized care (NorCog)”. NorCog is a national patient
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registry comprising consecutively enrolled patients referred to one of 27
participating memory outpatient clinics for workup of suspected cogni-
tive impairment or dementia. The patients in the present study were
recruited from one of the centers, the memory clinic at Oslo University
Hospital between 2010 and 2014. Included patients were assessed in
accordance with an extensive standardized clinical examination protocol
(Braekhus et al., 2011), and referred to the same brain MRI as healthy
controls. Two experienced memory clinic physicians diagnosed the pa-
tients according to research criteria in consensus (K.E./A.B., or M.L.B./
K.P.). Only patients fulfilling International Classification of Diseases, 10th
Revision criteria for AD (N ¼ 137; World Health Organization., 1993),
and the Winblad criteria for MCI (N ¼ 78; Winblad et al., 2004), as well
as patients referred with a subjective cognitive complaint that did not
fulfill MCI or dementia criteria, termed SCI (N ¼ 38; Garcia-Ptacek et al.,
2014) were included. Degree of cognitive impairment was quantified
using the results of the MMSE from the clinical assessment. Additional
descriptive information is summarized in Table 1.

Healthy controls were included retrospectively from two concurrent
projects (STROKEMRI and TOP) using the same MRI scanner and pulse
sequences as the patients. For STROKEMRI (Dørum et al., 2016, 2017),
healthy controls (18–78 yrs,N¼ 52) were recruited through a newspaper
ad and social media. Exclusion criteria included estimated IQ < 70,
previous history of alcohol-and substance abuse, history of neurologic or
psychiatric disease, participants presently on any medication signifi-
cantly affecting the nervous system and contraindications for MRI. All
participants were self-sufficient and living independently, and reported
no reason to suspect marked cognitive decline or undiagnosed dementia.
For TOP, healthy controls (18–46 yrs, N ¼ 303) were invited after a
stratified random selection drawn from the Norwegian National Popu-
lation Registry. All underwent initial interview where demographic and
clinical information was obtained. Exclusion criteria included a history of
head trauma with loss of consciousness of more than 10 min duration,
moderate to severe psychiatric or somatic disease, first-degree relatives
with mental illnesses (schizophrenia, bipolar disorder, and major
depression disorder), excessive substance abuse during the last 12
months, or not being able to perform an MRI scan. Blood samples were
taken for standard hospital hematological screening to rule out on-going
illnesses and a urine sample was collected to screen for substance abuse.
No MMSE examination was performed for the healthy controls, but all
subjects underwent neuropsychological screening. For post-hoc and
classification analyses, and also for data visualization the healthy con-
trols were divided into two groups: healthy young adults
(18 yrs < HCY < 45 yrs), and healthy middle-aged and older adults
(HCO� 45 yrs, Table 1) such that the HCO group was both of reasonable
size and as age-matched as possible to the clinical groups (MCI, SCI
and AD).

For the replication sample, we included age-matched groups from the
ADNI1 cohort (AD: N¼ 186, mean age¼ 75.2 ± 7.5 yrs, range 55–91 yrs,
Nfemale ¼ 89; MCI: N ¼ 395, mean age ¼ 74.7 ± 7.4 yrs, range 54–89 yrs,
Nfemale ¼ 140; HC: N ¼ 220, mean age ¼ 75.9 ± 5.1 yrs, range 60–90 yrs,
Nfemale ¼ 108). These data were obtained from the ADNI database (adni.
loni.usc.edu). The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. The
Table 1
Sample characteristics. AD¼ Alzheimer's disease, MCI¼Mild Cognitive Impairment, SCI¼ Subje
Mental State Examination. *Linear regression was used to compare groups for continuous varia
group differences (p < 0.05, Bonferroni correction) in the indicated direction.

HCY (n ¼ 324) HCO (n ¼ 31) SCI (n ¼ 38)

Age 31.1 ± 7.5 62.8 ± 10.3 63.9 ± 9
Sex N (%) female 142 (44) 17 (55) 17 (45)

MMSEa n/a n/a 29.3 ± 0.9
Head coil N (%) 8HRBRAIN 324 (100) 31 (100) 20 (53)

a Missing for 1 AD, 6 MCI and 2 SCI.
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primary goal of ADNI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression of
MCI and early AD. More details about the ADNI sample can be seen in
(Jack et al., 2008; Petersen et al., 2010; Weiner et al., 2010).

2.2. MRI acquisition

A 3 Tesla GE Signa HDxT scanner at Oslo University Hospital was
used to collect MR data of the discovery sample using two different head
coils (8-channel head coil (8HRBRAIN) and the Head/Neck/Spine (HNS)
coil, N per group is given in Table 1). A T1-weighted 3D Fast Spoiled
Gradient Echo (FSPGR) sequence was used with the following parame-
ters: repetition time (TR)¼ 7.8 ms, echo time (TE)¼ 2.956 ms, inversion
time (TI) ¼ 450 ms, flip angle 12�, matrix ¼ 256 � 256 mm, in-plane
resolution ¼ 1 � 1mm, slice thickness ¼ 1.2 mm; acquisition
time ¼ 7min 8s, 166 sagittal slices. Details regarding MRI acquisition of
the ADNI sample can be seen in (Jack et al., 2008).

2.3. Image preprocessing

T1-weighted scans were processed using FreeSurfer 5.3 (http://surfer.
nmr.mgh.harvard.edu) to estimate vertex-wise cortical thickness and
surface realization (Dale et al., 1999). All datasets included in this study
passed a rigorous quality control procedure, which included visual
assessment of the segmentations, minor manual intervention to correct
for segmentation errors wherever deemed applicable, and exclusion of
datasets with significant low quality due to e.g., motion artifacts. Surface
maps were resampled to a common coordinate system (fsaverage5,
10242 vertices) using a non-rigid high-dimensional spherical averaging
method to align cortical folding patterns (Fischl and Dale, 2000). Cortical
thickness and surface area maps were smoothed using a Gaussian kernel
with a commonly used full width at half maximum (FWHM) of 15 mm
and 10 mm, respectively. Total hippocampus volume was also estimated
based on FreeSurfer subcortical segmentations for post-hoc correlation
analysis with the components implicating this structure.

GMD maps were derived using FSL-VBM (Douaud et al., 2007), an
optimised VBM protocol (Good et al., 2002) carried out with FSL tools
(Smith et al., 2004). First, structural images were brain-extracted and
gray matter-segmented before being registered to the MNI152 standard
space using non-linear registration (Andersson et al., 2007). The result-
ing images were averaged and flipped along the x-axis to create a left-
right symmetric, study-specific gray matter template. Second, all native
gray matter images were non-linearly registered to this study-specific
template and “modulated” to correct for local expansion (or contrac-
tion) due to the non-linear component of the spatial transformation. The
modulated gray matter maps were smoothed with a sigma of 4 mm
(FWHM ¼ 9.4 mm). Note that although GMD-maps are interpreted as
measure of cerebral GM, the FSL-VBM GM-segmentation did include
white matter (WM)-voxels as revealed by manual inspection and overlap
with template atlases, thought to result from the probability based nature
of the segmentation scheme itself and age-related decreases and blurring
of GM and WM contrast.
ctive Cognitive Impairment, HCY¼ Young Controls, HCO¼ Elderly Controls, MMSE¼Mini
bles and Chi-square test was used for categorical variables, “>” and “<” denote significant

MCI (n ¼ 78) AD (n ¼ 137) Group comparisons

64.2 ± 11 71.4 ± 8.3 (HCY < HCO, MCI, SCI < AD)*
27 (35) 81 (59) (MCI < HCO, AD; HCY < AD) *

No difference among AD, SCI and HCO.
28.2 ± 1.8 23 ± 4.8 (AD < MCI, SCI) *
44 (56) 62 (45) (AD, MCI, SCI < HCO, HCY) *

No difference among AD, MCI, SCI.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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For a comparison with the multivariate features, we summarized the
cortical thickness, surface area using FreeSurfer's Desikan- Killiany atlas
(Desikan et al., 2009) and the GMD maps using the AAL atlas (Tzourio-
Mazoyer et al., 2002) (mean value for thickness, GMD and sum for sur-
face area within each ROI and whole brain), resulting in a total set of 262
univariate features, hereafter referred to as FS-VBM feature set. In
addition, we performed a principle component analysis (PCA) on the FS-
VBM set after normalizing all features (mean-centering and scaling to
have a standard deviation of 1). We then kept the PCA components
(n ¼ 136) that explained in total 95% of the variance. The FS-VBM and
PCA feature sets were used in multivariate group classification and age
prediction (see below and in Supplemental information (SI)).

2.4. Linked independent component analysis

We performed a data-driven decomposition of the imaging features
into independent components using FMRIB's LICA (FLICA, http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FLICA), which models the inter-subject vari-
ability across measures (Groves et al., 2011, 2012). A LICA component,
characterized by its spatial maps and the subject weights that are shared
across measures, may involve multiple or only one measure. A model
order of 50 was chosen based on previous studies (Doan et al. 2017b;
Francx et al., 2016; Groves et al., 2012), resulting in a biologically
meaningful yet manageable set of patterns. We assessed the effect of
model order on the multivariate group classification and age prediction
described below. Furthermore, at different model orders, we performed
exploratory hierarchical clustering of the subjects and evaluated the
resulting clusters using the cophenetic correlation coefficient (Farris,
1969). The results suggest that a model order of 50 was a suitable choice
for the data (more details in SI). After visual inspection of the spatial
maps, we excluded three components that showed strong head coil effect
from further multivariate analyses. Additionally, we performed a com-
parison between ICA decomposition using either thickness, surface area
or GMD maps, and LICA using all three measures simultaneously and
presented the results in SI. Briefly, empirical results with the LICA
components showing increased sensitivity to AD and superior classifi-
cation performance in most cases (Fig. S10) provided supporting evi-
dence for the benefits of combining these complementary measures
using LICA.

2.5. Statistical analyses

2.5.1. Univariate analyses
Diagnostic associations with each of the component's subject loadings

were tested using general linear models (GLM), and partial correlations
with MMSE were tested, covarying for age (using second order orthog-
onal polynomials to account for linear and quadratic effects), sex and
head coil (both as factorial variables). Effect size of group pairwise
comparisons in subject loadings was standardized using the Cohen's d as
follows: Cohen’s d ¼ 2*t

ffiffiffiffi

df
p , where t was the t statistics and df the degree of

freedom of the residuals. We also tested for main effects of age and head
coil in the same GLM. For the components showing significant age ef-
fects, we performed local polynomial fitting (LOESS) (Weisberg, 2005) of
age against the subject loadings and computed R2 as a measure of
goodness of fit. The components capturing strong head coil effects were
visually inspected; those reflecting non-anatomical spatial maps were
considered noise and excluded from subsequent analyses.

2.5.2. Multivariate classification and predictions
To evaluate clinical sensitivity of the derived multivariate patterns at

an individual level, we submitted the LICA features (N ¼ 47 after QC) to
pairwise classification among the AD,MCI, SCI and HCO groups using the
lasso classifier as implemented in the glmnet R package (Friedman et al.,
2010). To account for effects of normal aging while avoiding removing
disease-related effects associated with advancing age (Doan et al., 2017a;
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Dukart et al., 2011; Koutsouleris et al., 2015), prior to classification, we
estimated the age effects using the combined sets of HCY, HCO and SCI
subjects by means of GLM with age (second order orthogonal poly-
nomial) as the only independent variable. The resulting GLM model was
used to compute the residuals of each feature on all datasets, including
MCI and AD. We merged the SCI with the control groups to increase the
sample size, especially at the elderly range, since classification between
SCI and HCO showed chance level accuracy, indicating that there were
no notable neuroimaging phenotypic differences between these groups.
We then normalized each feature such that it had zero mean and a
standard deviation of 1.

In an attempt to disentangle the differential involvement of the LICA
features in presumably healthy aging and dementia, respectively, we
applied the lasso regression (Friedman et al., 2010) to predict age at
different age ranges and compared the feature ranking obtained from the
age prediction to the ranking obtained from pairwise group classifica-
tions. To be able to address the relation between dementia and aging in
terms of the brain structural underpinnings, we only used subjects from
the HCO, HCY and SCI groups for age prediction. We split these subjects
into two groups at beginning of middle age (45 years, according to the
National Library of Medicine's definition of middle age): one group with
an age range of [18; 45 yrs]), referred to as the early aging group, and one
with an age range of [45; 90 yrs], late aging. We performed age predic-
tion on both early, late and full age range groups. We also used the lasso
regression to predict MMSE within each of the clinical groups (AD, MCI,
SCI). Whereas the raw features were used in age prediction, to account
for possible confounding effects of normal aging in MMSE prediction, we
used the same residualized features as those used for group classification.

To compare the involvement of the LICA features across classifiers, for
each group or age classifier, we ran the same classification (or prediction)
after incrementally removing a number of features (n¼ 1,2,3,4,5 etc.…).
The features excluded in each iteration were determined based on feature
importance information derived from a reference classifier. For instance,
when running AD versus HCO classification referring to the Age_18_45
(early) age classifier, we (1) ordered the LICA feature using the feature
importance (standardized regression coefficient values) returned by the
Age_18_45 classifier, (2) incrementally removed features starting from the
most important features, ran AD versus HCO classification and computed
the performance, (3) repeated the above procedure for each of the clas-
sifiers (including AD versusHCO) as a reference classifier. If the classifiers
were similar in terms of the features involved, then the performance
would have a similar decay profile, and vice versa different performance
profiles would be observed if they were different.

To assess the predictive power of each of the components sensitive to
diagnosis in terms of group classification and age prediction compared to
using all LICA features, we repeated the same classification and age
prediction as described above. However, instead of using all LICA fea-
tures, we used each of those components as the only feature and the
linear regression classifier.

We used k-fold cross-validation to estimate the classification perfor-
mance. For each classification, all datasets involved were split into k
partitions of equal size. One partition was left out for validation (the
testing set). The classifier was then built using the (k-1) remaining par-
titions, on which another k-fold cross-validation was applied to estimate
the regularization parameter λ. As the group size was highly imbalanced
in most cases, to alleviate classification bias toward higher accuracy on
the majority class, we balanced class size of the training set (the testing
set remained untouched), based on a resampling technique as imple-
mented in the ROSE R package (Lunardon et al., 2014). The trained
classifier was then applied on the left out partition. This process is
repeated for each of the partitions. We chose the commonly used value of
10 for k (James et al., 2013). The entire process was repeated N times
(N ¼ 100, chosen as an arbitrarily large number) and the average per-
formance (balanced accuracy (Brodersen et al., 2010), accuracy, speci-
ficity, sensitivity, and area under the receiver-operator characteristics
curve (AUC)) was computed. We inferred the relative feature importance

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA
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(ranking) in a classification using the magnitude of the standardized
regression coefficients averaged across folds and repetitions. The same k-
fold cross-validation setup was used for group classification and age/
MMSE prediction. All models built for group classifications, age and
MMSE predictions are coherently referred to as classifiers.

Lastly, for a comparison between multivariate LICA features and
univariate FS-VBM, PCA features, we applied the same group pairwise
classification and age prediction as described using either the FS-VBM or
PCA feature sets and compared the performance obtained with LICA
features to the resulting performance. The results are presented in SI.

LICA decomposition was performed in Matlab (version R2014a). All
statistical and machine learning analyses were performed in R (http://
cran.r-project.org, version 3.2.1)). The glmnet (Friedman et al., 2010)
and caret (Kuhn, 2008) R packages were used for classification and
prediction, and the ggplot2 package (Wickham, 2009) for visualization.
We corrected for multiple statistical comparisons using permutation
testing (details are presented in SI) and used a significance threshold of
0.05. The p-values reported throughout the manuscript are corrected
based on permutation testing, unless stated otherwise.
2.6. Replication analyses using ADNI

The T1-weighted images of the replication sample were processed
using the same preprocessing pipeline, including LICA decomposition
Fig. 1. Plot of f-statistics showing main effect of diagnosis and age. The dashed line represents
permutation testing.
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(model order of 50), as described above. Subsequently, we assessed the
similarities between the resulting LICA patterns and those obtained from
the discovery sample by correlating the corresponding spatial maps. We
repeated the GLM analyses to study the main effect of diagnosis, ac-
counting for age and sex. Further, we also repeated the classification
analyses between AD, MCI and HC using the nested k-fold cross-
validation framework as described above.
2.7. Ethics

The Regional Committee for Medical Research Ethics in South-
Eastern Norway approved the study. All participants gave written
informed consent. Patients were only enrolled if determined to have
capacity for consent by the evaluating physician.

3. Results

Results on the main effects of diagnosis and age on the components'
subject loadings are presented in Fig. 1 and Fig. S1 for the discovery and
replication samples, respectively. Results for pairwise group comparison
for the two samples in terms of Cohen's d are detailed in Fig. S2. Fifty
independent components (IC) were derived for both samples. Unless
otherwise stated, the components' indices presented and discussed refer
to those obtained from the discovery sample.
significance threshold corrected for multiple comparisons across all components based on

http://cran.r-project.org
http://cran.r-project.org
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3.1. Three spatial components relate to clinical diagnosis, with consistent
patterns across independent samples

IC0, IC5, and IC9 (spatial maps and subject loading distribution
presented in Fig. 2A–B), explaining 24.4%, 1.7% and 1.39% of the data
variance (Fig. S3), respectively, showed strong effects of diagnosis.
IC3rep, IC4 rep, IC8 rep (rep ¼ replication sample; spatial maps and subject
loadings presented in Fig. 2C–D) also showed significant diagnosis effects
(Fig. S1) and resembled IC0, IC5 and IC9 (Fig. 2A–B), respectively, in the
discovery sample (IC3rep versus IC0: rthickness ¼ 0.66, rGMD ¼ 0.69; IC4rep
versus IC5: rthickness ¼ 0.95, rGMD ¼ 0.74; IC8rep versus IC9: rthickness ¼ 0.57,
rGMD ¼ 0.3, Fig. 2A–C). We found a consistent graded pattern of
AD < MCI < HCO, SCI or HC across cohorts, as visually indicated by the
boxplots in Fig. 2.

We note that IC4 and IC37 also showed significant main group effects
(Fig. 1) in the discovery sample. However, since IC4 showed a strong
effect of head coil (F¼ 36.9, Fig. S4) and both IC4 and IC37 did not show
significant group pairwise differences (Fig. S2), we chose to withhold
these components from further univariate analysis.

IC0 reflected global thickness variation co-occurring with GMD
variation in opposite weightings (positive at subcortical structures, the
lingual-occipital cortex, and negative at frontal white matter and tem-
poral cortex; AD <MCI, SCI, HCO). IC5 showed a pattern of lower medial
temporal lobe (MTL) thickness and hippocampal reductions in AD
compared to MCI and SCI (Cohen’s d ¼�0.27,�0.32, respectively). This
component showed an association with hippocampus volume with a
significant group by hippocampus volume interaction, showing the
Fig. 2. Spatial maps and subject loading distribution of the components showing strong diagno
the thresholded z-scores (3 < jzj < 10). In the spatial map, the weights (in percentage) indicate t
of measures showing negligible contribution are not presented. All presented components are m
represents the 25% and 75% quantiles, the horizontal bar in the box representing the median,
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steepest slope within AD (rAD ¼ 0.39, p ¼ 1.809 � 10�6; rMCI ¼ 0.05,
p ¼ 0.67; rSCI ¼ 0.21, p ¼ 0.2; rHCO ¼ 0.04, p ¼ 0.83; rHCY ¼ 0.12,
p ¼ 0.03, accounting for age, sex and estimated intracranial volume).

IC9 revealed an anterior-to-posterior graded pattern reflecting rela-
tively decreasing thickness and GMD along the posterior-anterior axis,
representing structural variation over and above all other components
(AD < MCI, SCI, HCO, Cohen's d ¼ �0.64, �0.56, �0.61, respectively).
The observed lower subject loadings in AD compared to controls reflect a
shift of the thickness and GMD distribution towards a stronger anterior
compared to posterior weighting. The positively weighted regions largely
comprised the lateral posterior aspects of the temporal lobe, precuneus,
and posterior cingulate cortex, indicating greater cortical atrophy in
these regions in AD.
3.2. The diagnosis-related components show variable relationships with age

Fig. 3 plots subject loadings as a function of age for IC0, IC5, IC9 as
well as for the corresponding IC3rep, IC4rep, IC8rep of the replication
sample. Age scatter plots for other components in the discovery sample
(IC1,3,7 and 14), which showed significant main effects of age (defined
as p < 0.05; R2 � 0.1), are presented in Fig. S5. In the discovery sample,
among the three diagnosis-related components, IC0 showed a strong
monotonic decrease with age (R2¼ 0.83 across all groups and 0.68 across
HCO, HCY and SCI), reflecting cortical thinning and bidirectional
(decrease-increase) GMD alterations as a function of age. IC5 on the other
hand showed quadratic effect of age (F ¼ 35.8, p < 0.001) with a modest
fit of R2 ¼ 0.13 across all groups. Notably, the fitted curve across HCO,
sis effect in the discovery (A, B) and replication samples (C, D). The spatial maps represent
he relative contribution of each measure to the component at the group level. Spatial maps
ultivariate, involving both thickness and GMD. In the subject loading box plots, the box
the diamond the mean, and the dots the outliers.



Fig. 3. (A) Scatter plot of subject loadings as a function of age. Blue curves represent the LOESS fit on the combined set of HCY, HCO and SCI subjects. Red curves represent the LOESS fit
using all datasets (HCY, HCO, SCI, MCI and AD). R2 ¼ explained variance. (B) and (C) Age scatter plot within elderly healthy controls, MCI and AD of IC0,5,9 in the discovery sample (B)
and IC3,4,8 in the replication sample (C). The lines represent the linear fits within groups. rep ¼ replication.
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HCY and SCI (Fig. 3A, blue) depicted an increase in subject loadings from
early until middle age. The curve then saturated during middle to late
age. When additionally including MCI and AD in age fit, the curve (red)
decreased during middle to late age, suggesting a specific involvement of
AD on IC5 in late aging.

IC9 was not significantly related to age (F¼ 4.8, p¼ 0.35, R2 ¼ 0.01).
Interestingly, whereas there was no significant correlation between IC9
and age within MCI, SCI or HCO (t ¼ �1.8, 0.9, 1.7, Cohen's d ¼ �0.42,
0.3, 0.64, p > 0.05, respectively), there was a trend of positive association
within the AD group (t ¼ 3.6, d ¼ 0.63, p ¼ 4.5 � 10�4, uncorrected)
indicating that the younger AD patients showed larger differences in
subject loadings with respect to the other groups than the older AD pa-
tients (Fig. 3B).

In the replication sample, whereas IC3rep was strongly correlated with
age (F ¼ 262, p ¼ 1 � 10�5), IC4rep and IC8rep only showed moderate or
weaker correlation with age (IC4rep: F ¼ 37, p ¼ 1 � 10�5; IC8rep: F ¼ 14,
p¼ 0.012). The same pattern of age-by-group interaction observed in IC5
and IC9 of the discovery sample was also seen in IC4rep and IC8rep with
the AD group showing a negative (t ¼ �4.5, d ¼ �0.67, p ¼ 9.8 � 10�6,
uncorrected) and positive (t¼ 5.9, d¼ 0.87, p¼ 1.8� 10�8, uncorrected)
association with age, respectively, and the other groups showing no as-
sociation (except MCI within IC4rep: t¼�4.1, d¼�0.41, p¼ 5.9� 10�5,
uncorrected).
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3.3. Independent components capture structural variation due to
differences in scanner hardware

IC4, IC8, IC12 and IC19 showed large effect of head coil (IC4: F ¼
36.9, IC8: F¼ 218.8, IC12: F¼ 144.9, IC19: F¼ 60.5, p < 0.001, Fig. S4).
Visual inspection of the spatial maps (Fig. S6) confirmed that IC8,12,19
appeared to be non-anatomical and were removed from further analyses.

3.4. Multivariate analyses on LICA subject loadings

3.4.1. Pairwise group classification
Table 2 shows the results from the group classifications. In the dis-

covery sample, classification performance was high for AD versus MCI
(AUC ¼ 0.80, sensitivity ¼ 0.73, specificity ¼ 74), AD versus SCI
(AUC ¼ 0.85, sensitivity ¼ 0.79, specificity ¼ 76), while being not
different than chance for MCI versus SCI (AUC ¼ 0.53, sensitivity ¼ 0.52,
specificity ¼ 0.46, p > 0.05, permutation testing). The classifier showed
very good performance for classification of AD versus HCO (AUC ¼ 0.87,
sensitivity ¼ 0.82, specificity ¼ 0.76), and chance level accuracy for
classification of MCI or SCI versus HCO. Across all classification pairs,
relatively balanced sensitivity and specificity were observed.

When used alone, IC9 showed higher and comparable classification
performance compared to IC5 and IC0, respectively. In particular, IC0



Table 2
Classification performance. sd ¼ standard deviation.

Sample Classification AUC (mean ± sd) Balanced Accuracy (mean ± sd) Accuracy (mean ± sd) Sensitivity (mean ± sd) Specificity (mean ± sd)

Discovery AD versus MCI 0.80 ± 0.02 0.73 ± 0.03 0.73 ± 0.03 0.73 ± 0.04 0.74 ± 0.05
AD versus SCI 0.85 ± 0.02 0.77 ± 0.03 0.78 ± 0.02 0.79 ± 0.03 0.76 ± 0.05
AD versus HCO 0.87 ± 0.02 0.79 ± 0.03 0.81 ± 0.02 0.82 ± 0.03 0.76 ± 0.06
MCI versus SCI 0.53 ± 0.04 0.49 ± 0.04 0.50 ± 0.04 0.52 ± 0.09 0.46 ± 0.09
MCI versus HCO 0.56 ± 0.06 0.54 ± 0.05 0.56 ± 0.05 0.59 ± 0.09 0.50 ± 0.10
SCI versus HCO 0.53 ± 0.04 0.50 ± 0.04 0.50 ± 0.04 0.52 ± 0.10 0.47 ± 0.12

Replication AD versus MCI 0.71 ± 0.01 0.65 ± 0.02 0.66 ± 0.02 0.63 ± 0.04 0.68 ± 0.03
MCI versus HC 0.70 ± 0.02 0.65 ± 0.02 0.66 ± 0.02 0.67 ± 0.03 0.63 ± 0.03
AD versus HC 0.93 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.84 ± 0.03 0.88 ± 0.02
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yielded an AUC of 0.73, 0.77 and 0.84 for AD versus MCI, SCI, and HCO,
respectively. IC5 yielded an AUC of 0.62, 0.69 and 0.57. IC9 yielded
higher performance than IC5 in all cases and higher than IC0 for AD
versus MCI, SCI (AUC ¼ 0.77, 0.79) and lower for AD versus HCO
(AUC ¼ 0.83) (all tested via bootstrapping with stratified sampling with
replacement and 10000 iterations, p<0.0001).

In the replication sample, classification results (AUC ¼ 0.93, 0.71,
0.70 for AD versus HC, AD versus MCI, MCI versus HC, respectively,
Table 2) showed a similar performance as obtained in the discovery
sample, although slightly higher for AD versus HC, MCI versus HC and
lower for AD versus MCI.

3.4.2. Age prediction
Fig. S8B shows the prediction performance (R2) for the multivariate

age predictor of the early, late, and full age ranges (R2 ¼ 0.42, 0.62, 0.77,
respectively). The performance was lower for narrowed age ranges. Fig. 4
shows the relevant feature importance. IC9 showed a weak contribution
to the age prediction across all age ranges, whereas IC0 was the most
important feature for all age classifiers. The MTL pattern (IC5) appeared
to show different involvement at different age ranges. Specifically,
whereas it showed strong contribution in early aging (β ¼ 0.20, rank¼ 4)
prediction, there was no contribution from this component at late aging
(β ffi 0), indicating that this component is not sensitive to age at the
elderly age ranges. Similarly, IC3 and IC7 (reflecting global thickness and
superior cortical thickness, respectively, Fig. S7) were sensitive to early
but not late aging. Conversely, IC1 (reflecting global surface area), IC14
(ventricular enlargement) and IC27 (middle frontal surface area and
GMD) (Fig. S7) were among the most important features in late but not
early aging.

When used alone, whereas IC0 yielded moderate age prediction
performance (R2 ¼ 0.2, 0.49, 0.65 for early, late and full ranges,
respectively) compared to using all LICA feature, IC5 showed modest and
no predictive power at early (R2 ¼ 0.09) and late (R2 ¼ 0.002) ranges,
respectively, and IC9 showed no predictive power (R2 ¼ 0.003, 0.03).

3.4.3. Associations with cognition and MMSE prediction
IC0, 5, and 9 correlated positively with MMSE within AD (IC0: partial

r ¼ 0.33, p ¼ 9 � 10�5; IC5: r ¼ 0.24, p ¼ 0.0045; IC9: r ¼ 0.39,
p ¼ 1.59 � 10�6, Fig. S9), indicating that individual differences in these
components in AD patients are associated with disease severity. IC5 also
correlated positively with MMSE within SCI (r ¼ 0.44, p ¼ 0.0068,
Fig. S9). No significant association was found within MCI. In terms of
prediction, an R2 of 0.12 (r ¼ 0.35, p < 0.05, permutation) was observed
between the predicted and observed MMSE within AD, in line with the
univariate results. IC5 and IC9 were the most important features (Fig. 4).
A poor performance was observed within MCI and SCI (R2 ¼ 0.03 and
0.01, respectively).

3.4.4. Comparisons between clinical and age classifiers
The most important features (n ¼ 5) as indicated by the standardized

regression coefficients (Fig. 4) were IC0,5,9,21,37 for AD versus MCI,
IC0,5,9,37,46 for AD versus SCI, IC0,7,9,21,37 for AD versus HCO,
IC0,3,5,7,28 for early age prediction, IC0,1,14,27,40 for late age
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prediction. The classifiers AD versusMCI and AD versus HCO shared 4 out
of 5 most important features (IC0,5,9,37), and all three classifiers AD
versus MCI, SCI, HCO shared 3 out of 5 most important features
(IC0,9,37), whereas there is one common feature among the set of most
important features between late age prediction and the group classifiers
(IC0) and two between early age prediction and the group classi-
fiers (IC0,5).

Whereas in the age classifiers, IC0, IC1, IC3 (global thickness, Fig. S7)
were the main predictors (effect of other ICs were either zero and very
weak), in clinical group classifications, although IC0, IC5 and IC9 were
the main predictors, there was considerable effect from other compo-
nents, for instance IC37 (basal ganglia GMD, Fig. S7) in AD versus
MCI,SCI, IC7 (superior cortical thickness, Fig. S7) in AD,MCI versus HCO,
and IC31 (temporal pole area and GMD, Fig. S7) in AD,MCI,SCI
versus HCO.

IC0 was themost important feature for classification of AD versusMCI,
SCI and HCO as well as for the age and MMSE classifiers. Both IC5 and
IC9 showed importance in classification between AD and MCI, SCI, HCO
with IC9 showing higher contribution than IC5. IC5 was important to
early but not late age prediction, while but IC9 showed almost no
contribution to either early or age prediction (Fig. 4).

Fig. 5 presents performance profiles when comparing among the
group (AD versusMCI, SCI, HCO) and age classifiers (early, Age_18_45 age
prediction, and late, Age_45_90 age prediction). When excluding features
based on its own feature importance, Age_18_45 dropped to a low per-
formance (R2 < 0.1) after excluding the first five most important features,
while Age_45_90 after the first one. The group classifier dropped the
performance to chance level (0.5) after excluding a larger number of
important features (approximately 12, 7 and 8 features for AD versusMCI,
SCI and HCO, respectively). The group classifiers, when referring to each
other, showed similar profiles, whereas highly different performance
profiles were observed, mostly reflecting a drop after IC0 was excluded,
when referring to the age classifiers. Similarly, the performance profile of
the age classifiers showed considerable difference when referring to the
group classifiers compared to when referring to their own feature
importance rankings. Within the age classifiers, the performance profile
of the early age classifier changed considerably when referring to late age
classifier, reflecting a drop in accuracy after IC0 was dropped and then
stayed rather stable. Unlike the early age classifier, the performance of
the late age classifier dropped significantly after IC0 was excluded.

4. Discussion

Using a data-driven multivariate approach, we found distinct brain
patterns that are sensitive to clinical status and useful for AD classifica-
tion. The patterns included both age-related and disease-specific modes
of gray matter variation related to AD, which were consistent across the
discovery and replication samples. A global thickness and gray matter
density pattern represents a common shared feature between aging and
AD. Disease-specific features included an anterior-to-posterior thickness
and gray matter gradient, and medial temporal lobe atrophy in late age.
The reported multivariate patterns also showed moderate predictive
value for cognitive status in AD patients. Using machine learning, we



Fig. 4. Feature importance quantified using the lasso's standardized regression coefficients. The ranking was inferred based on the magnitude of the regression coefficients. Given that most
of the features showed near zero coefficients, for visualization purpose, we focused on the first five most important features. Feature ranking of classification (MCI versus SCI, MCI versus
HCO, SCI versus HCO) and prediction (MMSE within MCI, SCI) with low performance is not shown. The color codes for the actual feature importance rankings. r ¼ importance ranking.
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attempted to disentangle dementia from normal aging and report evi-
dence of differential involvement of morphological patterns useful for
age prediction during different parts of the adult lifespan and clinical
status classification, supporting the hypothesis of different biological
mechanisms underlying normal brain aging and AD-related
neurodegeneration.
4.1. Patterns sensitive to clinical diagnosis

The global IC0 was both sensitive to age and diagnosis suggesting
common mechanisms. IC0 was characterized by a well-known pattern of
widespread cortical thinning (Douaud et al., 2014; Groves et al., 2011). A
bidirectional pattern of GMD including anterior temporal increases was
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also seen. The nature of the bidirectional GMD-pattern is unknown, but
the finding suggests a regional variation in the relationship between
thickness and GMD, and may be related to variable age-differences in
tissue intensity and contrast (Salat et al., 2009; Westlye et al., 2010).
More research is needed to understand the biological relevance of GMD.

IC5 reflected a characteristic morphological pattern primarily
encompassing the MTL, implicating coordinated cortical thickness and
GMD reductions in the entorhinal cortex, parahippocampus, hippocam-
pus and the insular cortex in AD. The neuroanatomical distribution of this
component is consistent with one of the most established neuroimaging
biomarkers of AD, and the curvilinear age trajectories (Ostby et al., 2009;
Walhovd et al., 2011) and the moderate correlation of the subject
weights with hippocampus volume suggest that this component is partly



Fig. 5. Performance profile of each classifier when incrementally excluding the first n most important features (n ¼ 1,2,3,…,15), referring to feature importance ranking obtained from a
reference classifier to decide on the set of excluded features. Area Under the ROC Curve (AUC) and R2 were computed for group classification and age prediction, respectively. The black
dashed horizontal lines represent the performance obtained when using all LICA features.
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reflecting the volume of the hippocampal structure along with other and
coordinated MTL structural differences. Although numerous studies have
implicated the MTL as a sensitive marker in differentiating AD from MCI
and HC (Dickerson et al., 2009; Duara et al., 2008; Frisoni et al., 2010),
the present results support the notion that MTL atrophy may not be very
specific for AD (Fjell et al., 2013a; Likeman et al., 2005).

While being discriminative, the MTL component (IC5, Fig. 2) was
outperformed by IC0 and IC9 on its discriminative power in differenti-
ating between AD and MCI, SCI and HCO. Singh et al. observed wide-
spread cortical thinning with significant extension into the lateral
temporal lobe associated with disease progression fromMCI to AD (Singh
et al., 2006). The associations of IC0 and IC9 are consistent with these
results, implicating global cortical thinning and additional thinning at
the lateral temporal lobe. Whereas IC0 showed strong relations with age
across the entire age span included and IC5 across the early age span, IC9
was uniquely related to diagnosis suggesting that this distinct mode of
gray matter variation is specific to AD in a manner detectable by LICA.
The spatial map of IC9 consisted of a symmetrical posterior greater than
anterior gradient including more cortical thinning and reduced GMD in
lateral temporo-parietal and precuneus bilaterally in AD. A similar AD-
specific spatial distribution involving bilateral parietal lobes has been
observed (Du et al., 2007), and resembles MRI-findings of autopsy-
confirmed early onset AD patients suggesting that posterior greater
than anterior atrophy was the most specific for ruling in a diagnosis of AD
compared with both controls and other dementia etiologies (Likeman
et al., 2005). The results suggest that whereas structures such as the
hippocampus and frontal lobes are sensitive to a spectrum of insults
including aging, parietal atrophymay have a more selective vulnerability
for AD pathology. For instance, cerebral amyloid angiopa-
thy––commonly seen in AD patients––has a predilection for posterior
vasculature (Serrano-Pozo et al., 2011). We also speculate that the IC9
pattern might probe specific sub-entities of AD pathology, for instance
associated with posterior AD or posterior cortical atrophy syndromes
(Crutch et al., 2012). Further research on LICA and sub-group specificity
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within dementia syndromes is warranted.
The age association observed only within the AD group for IC5 and

IC9 indicated that the older AD patients were more different than the
control group compared to the younger AD patients in the MTL pattern
(IC5), and vice versa, the younger AD patients were more different than
the control group compared to the older AD patients in IC9 (Fig. 3B). This
result is in line with previous findings documenting that early-onset AD
had largest atrophy at the occipital and parietal lobes while late-onset AD
were markedly atrophic at the hippocampus (Frisoni et al., 2007). These
findings support differential mechanisms of early- versus late-onset AD,
and future research should investigate if this pattern represents a marker
of early-vs-late onset AD.
4.2. Discriminative patterns in AD classification

We observed high performance for classification between AD and
HCO (AUC ¼ 0.87, sensitivity ¼ 0.82, specificity ¼ 0.76 in the discovery
sample, and AUC ¼ 0.93, sensitivity ¼ 0.84, specificity ¼ 0.88 in the
replication sample, Table 2), comparable to previous structural MRI
studies. A comprehensive evaluation of different classifiers based on
whole-brain structural MRI features (Cuingnet et al., 2011) reported a
sensitivity ranging between 75% and over 81% and specificity of over
89%. Although our classification result did not outperform existing
findings, we have demonstrated high clinical sensitivity of the derived
LICA multivariate features at an individual level, meeting the required
sensitivity of ideal biomarkers (>80%) (Weiner et al., 2013). The ob-
tained accuracy when classifying between AD and MCI and SCI, respec-
tively, was comparable with the accuracy obtained when classifying
between AD and HCO. In line with the univariate analyses (Fig. S2),
IC0,5,9 were among the most important features in these classifications.
Our results correspond with previous implications of MTL regions in AD
classification (Cuingnet et al., 2011), but expand previous reports by
demonstrating stronger contribution of IC0 and IC9, in addition to the
medial temporal lobe patterns (IC5).
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Despite the generally observed graded pattern of AD < MCI < SCI
across IC0,5,9, classification between MCI and SCI was at chance level,
which is in line with the considerable group overlap on demographic and
cognitive variables (Table 1). Whereas the profile of the present SCI
group was comparable to other studies (Engvig et al., 2014; Garcia-
Ptacek et al., 2014), the MCI group was younger and higher perform-
ing in terms of global cognition compared with other studies (e.g., Alladi
et al., 2006; Misra et al., 2009). Although the practice of clinical di-
agnostics is not easily confined to strict algorithmic definitions, such as
employing specific cut-offs for MMSE, using biomarkers or more detailed
neuropsychological profiling with stricter criteria for MCI and SCI could
have improved the classification due to less phenotypic overlap between
the two groups. Additionally, the low performance of MCI versus HCO
and SCI versus HCO indicates a brain phenotypic overlap among these
three groups, a possible structural correlate of the relative high––or
closer to normal––cognitive functioning in the two patient groups.

Lastly, despite unbalanced group sizes in both discovery and repli-
cation samples, we obtained a fairly balanced performance between
sensitivity and specificity. This demonstrates the usability of a resam-
pling approach prior to training in a k-fold cross validation framework to
alleviate the difference in sample size (Kuhn and Johnson, 2013;
Lunardon et al., 2014), a commonly faced challenge in machine learning
in neuroimaging research, in particular when utilizing clinical samples
and recruitment in a clinical setting.

4.3. Age prediction and relevant patterns

The prediction model showed good performance on the entire age
span (explained variance R2 ¼ 0.77, [18; 90] yrs), and moderate per-
formance for narrowed spans (R2 ¼ 0.62 for [45; 90] yrs, and 0.42 for
[18; 45] yrs, Fig. S8). This prediction accuracy corresponds to the per-
formance reported in other studies (Cole et al., 2015; Schnack et al.,
2016), although our performance is slightly lower, which may be
explained by the fact that the healthy groups in our sample cover a much
wider age span compared to (Schnack et al., 2016) rendering the effec-
tive sample size per year smaller. The higher performance of late age
prediction than early age prediction may be attributed to the wider age
range in the late range compared to early range, and that the effects of
age on the brain structure is heterogeneous and varies across the adult
lifespan (Fjell et al., 2013b). IC0 (global cortical thinning and GMD al-
terations) and IC1 (global surface area) were among the most informative
features in most of the age predictors. This finding is consistent with
previous studies which reported age-related global cortical thinning and
surface area reduction across the adult lifespan (Fjell et al., 2009;
Lemaitre et al., 2012). Notably, IC5 and IC9, which showed strong and
significant diagnosis effects (Fig. 1), showed very weak contribution in
age prediction across all age ranges (IC9) or at the late age range (IC5),
indicating disease-specific focal patterns of gray matter alterations.

Except for IC0, the set of important features for age prediction was
considerably different between early and late age prediction, suggesting
that features involved in younger part of the adult lifespan are not
informative for predicting age in the older, and vice versa. Indeed, IC14
(reflecting ventricular enlargement, which is particularly prevalent at old
age (Pfefferbaum et al., 1994), Fig. S7), and IC27 (reflecting middle
frontal surface area and GMD, Fig. S7) contributed to late but not early
age prediction (Fig. 4). Conversely, IC3 (reflecting global cortical thick-
ness reduction with age at the young age range, Fig. S5, Fig. S7), IC5
(MTL, Fig. 2) and IC7 (superior cortical thickness, Fig. S7) contributed to
early but not late age prediction (Fig. 4). These findings are consistent
with earlier work reporting differential effects of age on cortical thick-
ness within different age ranges, specifically cortical thickness differ-
ences appeared to be widespread at [8; 30 yrs] and becamemore regional
and less prominent at older ranges (Westlye et al., 2010). Taken together,
by demonstrating largely non-overlapping feature sets involved in pre-
dicting early and late aging, our results are in line with the notion of
heterogeneous and nonlinear aging of the human brain (Fjell and
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Walhovd, 2010), and the spatial patterns of the implicated components
and age-curves of the associated subject weights may offer a novel win-
dow into distinct and statistically independent mechanisms of aging and
neurodegeneration across the AD continuum.

4.4. MMSE prediction and the relevant patterns

Strongly driven by IC0,5,9 together with IC1, the MMSE classifier
yielded predicted values that explained about a fifth of the total variance
of the observed MMSE values in AD patients. Our prediction accuracy
within AD is in line with the results reported in (Stonnington et al.,
2010), which largely implicated the medial temporal lobe (IC5) among
the relevant regions. The contribution of IC0 and IC9 in this prediction
also corresponds with previous studies reporting a positive association
between cognitive performance (quantified by MMSE) and cortical
thickness involving the frontal, temporal as well as parietal lobes in AD
(Du et al., 2007; Lerch et al., 2005). In order to avoid issues of circularity
related to the fact that MMSE of the AD group was considerably lower
than MCI and SCI, we did not predict MMSE across AD, MCI and SCI. The
low prediction accuracy within SCI may be explained by the low variance
of MMSE scores within this group due to ceiling effects (Velayudhan
et al., 2014).

4.5. Differences and similarities between aging and AD-related patterns

The feature importance and the performance profiles depicted in
Figs. 4 and 5 showed that the effects of age is captured in a small number
of distinct patterns, whereas the effect related to disease is distributed
across several spatial components. Our data suggest that the modes of
brain structural variation overlapping between aging and AD are globally
distributed, whereas differential patterns are more localized, such as IC5
and IC9 (Fig. 2), and capture much subtler variance compared to the
global patterns (Fig. S3). The considerable difference in performance
profiles between the group and age classifiers (Fig. 5) provides sup-
portive evidence of differential involvement in AD compared to age-
related patterns, both for early and late aging.

Our results did not support involvement of IC9 (anterior-posterior
thickness and GMD gradient pattern) in the age classifiers across the
lifespan, and for IC5 (MTL pattern) at the late age range. These features
however were strongly implicated in AD classification, as evidenced from
both multivariate classification using all LICA features and using either
IC9 or IC5. Taken together, these results indicate that the localized pat-
terns implicating medial temporal atrophy and thickness/GMD gradient
along the anterior-posterior axis are more specific to disease mechanisms
than aging.

IC0 was important in both group classification and age prediction,
suggesting that aging and dementia share the same global effects, i.e.
global cortical thinning and alterations in GMD. In line with our findings
suggesting differential involvement of brain characteristics in aging and
AD, using pattern analysis techniques, atrophy patterns associated with
advanced age have been shown to only partially overlap and notably
deviate from those typically found in AD (Habes et al., 2016). Also, our
findings of MTL (IC5) involvement in dementia classification corrobo-
rates previous univariate studies showing that regional MTL volume and
thickness, particularly the hippocampus and entorhinal cortex distin-
guish well between normal controls and AD (Dickerson et al., 2009; Fjell
et al., 2010), with negligible contributions from MTL surface area
(Dickerson et al., 2009).

4.6. Replication analyses using ADNI

Performing the same analyses independently on a replication sample,
we found a set of three components (IC3rep, IC4rep, IC8rep) that strongly
resembled IC0, IC5 and IC9 in the discovery sample (Fig. 2). Among these
components, IC5 was nearly identical to IC4rep, suggesting that that this
MTL pattern is highly robust across different cohorts. Both IC0 and its
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counterpart in the replication sample (IC3rep) showed a strong age as-
sociation, although IC0 was much more strongly associated with age.
This is likely explained by the much larger age variance in the discovery
sample, which was captured in IC0. IC9, more strongly driven by thick-
ness than GMD, also showed a high similarity with IC8rep. Both of these
components reflected a gradient in thickness with stronger weighting
posteriorly, particularly the occipital, medial parietal and lateral tem-
poral regions, than anteriorly. This gradient however appeared to be
visually more pronounced in IC9 than in IC8rep. Despite the large dif-
ference in age range between the two samples, the fact that IC4rep, IC8rep,
found in a sample consisting of well age-matched groups, resembled IC5
and IC9 support our findings on the disease-specific characteristics of
these patterns.

4.7. Strengths and limitations of the study

A strength of our study includes the inclusion of a wide spectrum of
participants across both age (early – late) and disease severity (SCI, MCI,
and AD) which enabled us to assess common and unique features across
both the healthy adult human lifespan and the AD spectrum, as well as
the interplay between AD-related and age-related patterns. Further, the
use of LICA allowed us to simultaneously model global (e.g. IC0, global
thickness and GMD alterations) and local (e.g. IC5, MTL atrophy, and
IC9, anterior-posterior thickness gradient) independent effects across
different complementary morphological measures. Since a main advan-
tage of LICA is the ability to model shared variance across different
measures, the derived components may show increased sensitivity to an
effect of interest, especially in the case when the effect is subtle and
present across different measures (Francx et al., 2016).

Our study, however, has a number of limitations that should be taken
into account when interpreting the results. Two different head coils were
used during acquisition of the discovery sample, which may lead to un-
wanted source of MRI signal variation. However, the effects of head coil
on the estimated morphometric features were accounted for by a few
number of components (IC8,12,19, Fig. S6), which captured a tremen-
dous amount of variance in head coil, leaving the rest of the components
largely unaffected or affected to a modest extent. Although replication in
independent samples is needed, this result demonstrates that LICA could
be a promising multivariate tool for multi-site studies, where it is highly
desirable to combine data from different scanners in the same unified
analysis framework. Secondly, although the study was designed to assess
gray matter differences only, inspection of the FSL-VBM GM-segmenta-
tion revealed some inclusion of underlying WM across the cortex likely
due to age-related blurring of tissue borders and the probabilistic
threshold set for tissue separation. We have recently demonstrated the
utility of LICA for diffusion MRI metrics in an overlapping dataset (Doan
et al., 2017a) and future studies should assess the benefits of combining
features across imaging modalities (morphometry, diffusion MRI, func-
tional MRI, etc.).

In this study, we used a model order of 50 for LICA decomposition.
Our classification and prediction results indicate stable performance
across a range of model orders and hierarchical clustering results favor
this choice of model order. However, there is generally no optimal model
order and future studies should assess the use of different model orders.

Another limitation is that the AD group in the discovery sample was
not very well age-matched with the other elderly groups, making it
difficult to completely rule out the effect of age in the group comparisons,
although age was included as covariate in all univariate analyses. Since
advanced age is the single most important risk factor for AD, the slightly
higher age in the AD group compared to the MCI and SCI group is not
surprising, in particular considering the clinical nature of the study.
Whereas the results from the replication sample strongly support that the
results from the discovery sample are not simply explained by age-
differences between groups, follow-up studies are needed to assess the
value of the identified brain patterns for predicting clinical conversion in
the MCI and SCI patients, which has important clinical implications.
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Lastly, whereas the diagnostic workup was performed by two experi-
enced physicians according to research criteria and following a
comprehensive and standardized protocol (Braekhus et al., 2011), the
clinical and biological phenotyping (e.g., amyloid and tau status, APOE4)
in the current discovery samples was limited. Further studies are needed
to test for associations with a wider range of clinical and cognitive
phenotypes, including amyloid status, genetic risk, episodic memory etc.

Conclusively, by means of data-driven analysis, we have reported
distinct and statistically independent multivariate MRI-based brain pat-
terns across a naturalistic memory clinic patient sample with increasing
degree of cognitive impairment showing high sensitivity to clinical sta-
tus. In addition to global reductions in estimated cortical thickness and
surface area, which were isolated in independent components capturing
large data variance, the anatomical distribution of the other clinically
sensitive components, capturing subtler variance, are in line with known
pathophysiological properties of AD, reflecting co-occurring thickness
and GMD reductions encompassing MTL regions including the hippo-
campus, lateral temporal, precuneus and posterior cingulate cortex, as
well as a pattern of anterior-posterior thickness and GMD gradient. In
addition to its clinical sensitivity, a global thickness and GMD pattern
also showed very high age prediction power, corroborating the extant
evidence of reduced apparent cortical thickness throughout the adult
lifespan. These patterns are consistent across independent samples. The
current findings expand previous knowledge by suggesting that the
characteristic pattern of cortical thickness and volumetric reductions in
aging and across the AD spectrum are in fact reflecting the linear com-
bination of several independent components that may represent distinct
neurobiological and pathophysiological processes. Using multivariate
machine learning techniques, we documented differential and specific
brain characteristics involved in dementia compared to both early and
late aging, and also between these different age spans. This result adds
structural neuroimaging evidence to the notion that aging across the
adult lifespan is heterogeneous and non-linear, and that AD reflects
accelerated aging alongside disease-specific effects, supporting the uti-
lization of advanced structural MRI for early detection in a clinical de-
mentia setting.
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